61 research outputs found

    Measures of Clonal Hematopoiesis:Are We Missing Something?

    Get PDF
    Clonal Hematopoiesis (CH) is a common, age-related phenomenon of growing scientific interest, due to its association with hematologic malignancy, cardiovascular disease and decreased overall survival. CH is commonly attributed to the preferential outgrowth of a mutant hematopoietic stem cell (HSC) with enhanced fitness, resulting in clonal imbalance. In-depth understanding of the relation between HSC clonal dynamics, CH and hematologic malignancy requires integration of fundamental lineage tracing studies with clinical data. However, this is hampered by lack of a uniform definition of CH and by inconsistency in the analytical methods used for its quantification. Here, we propose a conceptual and analytical framework for the definition and measurement of CH. First, we transformed the conceptual definition of CH into the CH index, which provides a quantitative measure of clone numbers and sizes. Next, we generated a set of synthetic data, based on the beta-distribution, to simulate clonal populations with different degrees of imbalance. Using these clonal distributions and the CH index as a reference, we tested several established indices of clonal diversity and (in-)equality for their ability to detect and quantify CH. We found that the CH index was distinct from any of the other tested indices. Nonetheless, the diversity indices (Shannon, Simpson) more closely resembled the CH index than the inequality indices (Gini, Pielou). Notably, whereas the inequality indices mainly responded to changes in clone sizes, the CH index and the tested diversity indices also responded to changes in the number of clones in a sample. Accordingly, these simulations indicate that CH can result not only by skewing clonal abundancies, but also by variation in their overall numbers. Altogether, our model-based approach illustrates how a formalized definition and quantification of CH can provide insights into its pathogenesis. In the future, use of the CH index or Shannon index to quantify clonal diversity in fundamental as well as clinical clone-tracing studies will promote cross-disciplinary discussion and progress in the field.</p

    Clonal analysis of patient-derived samples using cellular barcodes

    Get PDF
    Cellular barcoding is a relatively simple method that allows quantitative assessment of the clonal dynamics of normal, nonmalignant hematopoietic stem cells and of leukemia. Cellular barcodes are (semi-)random synthetic DNA sequences of a fixed length, which are used to uniquely mark and track cells over time. A successful barcoding experiment consists of several essential steps, including library production, transfection, transduction, barcode retrieval, and barcode data analysis. Key challenges are to obtain sufficient number of barcoded cells to conduct experiments and reliable barcode data analysis. This is especially relevant for experiments using primary leukemia cells (which are of limited availability and difficult to transduce), when studying low levels of chimerism, or when the barcoded cell population is sorted in different smaller subpopulations (e.g., lineage contribution of normal hematopoietic stem cells in murine xenografts). In these settings, retrieving accurate barcode data from low input material using standard PCR amplification techniques might be challenging and more sophisticated approaches are required. In this chapter we describe the procedures to transfect and transduce patient-derived leukemia cells, to retrieve barcoded data from both high and low input material, and to filter barcode data from sequencing noise prior to quantitative clonal analysis

    Detection of chemotherapy-resistant patient-derived acute lymphoblastic leukemia clones in murine xenografts using cellular barcodes

    Get PDF
    Clonal heterogeneity fuels leukemia evolution, therapeutic resistance, and relapse. Upfront detection of therapy-res istant leukemia clones at diagnosis may allow adaptation of treatment and prevention of relapse, but this is hampered by a paucity of methods to identify and trace single leukemia-propagating cells and their clonal offspring. Here, we tested methods of cellular barcoding analysis, to trace the in vivo competitive dynamics of hundreds of patient-derived leukemia clones upon chemotherapy-mediated selective pressure. We transplanted Nod/Scid/Il2Rg(-/-) (NSG) mice with barcoded patient-derived or SupB15 acute lymphoblastic leukemia (ALL) cells and assessed clonal responses to dexamethasone, methotrexate, and vincristine, longitudinally and across nine anatomic locations. We illustrate that chemotherapy reduces clonal diversity in a drug-dependent manner. At end-stage disease, methotrexate-treated patientderived xenografts had significantly fewer clones compared with placebo-treated mice (100 +/- 10 vs. 160 +/- 15 clones, p = 0.0005), while clonal complexity in vincristineand dexamethasone-treated xenografts was unaffected (115 +/- 33 and 150 +/- 7 clones, p = NS). Using tools developed to assess differential gene expression, we determined whether these clonal patterns resulted from random clonal drift or selection. We identified 5 clones that were reproducibly enriched in methotrexate-treated patient-derived xenografts, suggestive of pre-existent resistance. Finally, we found that chemotherapymediated selection resulted in a more asymmetric distribution of leukemia clones across anatomic sites. We found that cellular barcoding is a powerful method to trace the clonal dynamics of human patient-derived leukemia cells in response to chemotherapy. In the future, integration of cellular barcoding with single-cell sequencing technology may allow in-depth characterization of therapy-resistant leukemia clones and identify novel targets to prevent relapse. (C) 2020 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc

    Donor-to-Donor Heterogeneity in the Clonal Dynamics of Transplanted Human Cord Blood Stem Cells in Murine Xenografts

    Get PDF
    Umbilical cord blood (UCB) provides an alternative source of hematopoietic stem cells (HSCs) for allogeneic transplantation. Administration of sufficient donor HSCs is critical to restore recipient hematopoiesis and to maintain long-term polyclonal blood formation. However, due to lack of unique markers, the frequency of HSCs among UCB CD34(+) cells is the subject of ongoing debate, urging for reproducible strategies for their counting. Here, we used cellular barcoding to determine the frequency and clonal dynamics of human UCB HSCs and to determine how data analysis methods affect these parameters. We transplanted lentivirally barcoded CD34(+) cells from 20 UCB donors into Nod/Scid/IL2Ry(-/-) (NSG) mice (n = 30). Twelve recipients (of 8 UCB donors) engrafted with >1% GFP(+) cells, allowing for clonal analysis by multiplexed barcode deep sequencing. Using multiple definitions of clonal diversity and strategies for data filtering, we demonstrate that differences in data analysis can change clonal counts by several orders of magnitude and propose methods to improve their consistency. Using these methods, we show that the frequency of NSG-repopulating cells was low (median similar to 1 HSC/10(4) CD34(+) UCB cells) and could vary up to 10-fold between donors. Clonal patterns in blood became increasingly consistent over time, likely reflecting initial output of transient progenitors, followed by long-term HSCs with stable hierarchies. The majority of long-term clones displayed multilineage output, yet clones with lymphoid- or myeloid-biased output were also observed. Altogether, this study uncovers substantial interdonor and analysis-induced variability in the frequency of UCB CD34(+) clones that contribute to post-transplant hematopoiesis. As clone tracing is increasingly relevant, we urge for universal and transparent methods to count HSC clones during normal aging and upon transplantation. (C) 2019 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc

    Left or right? Directions to stem cell engraftment:Directions to stem cell engraftment

    Get PDF
    In this issue of JEM, Wu et al. (https://doi.org/10.1084/jem.20171341) use genetic barcoding of macaque hematopoietic stem cells to demonstrate that, after transplantation, HSCs are very asymmetrically distributed and uncover a thymus-independent pathway for mature T cell production in the bone marrow

    Case Report:Immune dysregulation associated with long-lasting regression of a (pre)leukemic clone

    Get PDF
    Regression of leukemia in the absence of disease-modifying therapy remains poorly understood, although immunological mechanisms are thought to play a role. Here, we present a unique case of a 17-year-old boy with immune dysregulation and long-lasting regression of a (pre)leukemic clone in the absence of disease-modifying therapy. Using molecular and immunological analyses, we identified bone marrow features associated with disease control and loss thereof. In addition, our case reveals that detection of certain fusion genes with hardly any blasts in the bone marrow may be indicative of an accompanying oncogenic fusion gene, with implications for disease surveillance- and management in future patients.</p

    C/EBP alpha and GATA-2 Mutations Induce Bilineage Acute Erythroid Leukemia through Transformation of a Neomorphic Neutrophil-Erythroid Progenitor

    Get PDF
    Acute erythroid leukemia (AEL) commonly involves both myeloid and erythroid lineage transformation. However, the mutations that cause AEL and the cell(s) that sustain the bilineage leukemia phenotype remain unknown. We here show that combined biallelic Cebpa and Gata2 zinc finger-1 (ZnF1) mutations cooperatively induce bilineage AEL, and that the major leukemia-initiating cell (LIC) population has a neutrophil-monocyte progenitor (NMP) phenotype. In pre-leukemic NMPs Cebpa and Gata2 mutations synergize by increasing erythroid transcription factor (TF) expression and erythroid TF chromatin access, respectively, thereby installing ectopic erythroid potential. This erythroid-permissive chromatin conformation is retained in bilineage LICs. These results demonstrate that synergistic transcriptional and epigenetic reprogramming by leukemia-initiating mutations can generate neomorphic pre-leukemic progenitors, defining the lineage identity of the resulting leukemia

    The influence of single-nucleotide polymorphisms on overall survival and toxicity in cabazitaxel-treated patients with metastatic castration-resistant prostate cancer

    Get PDF
    Purpose: Cabazitaxel, used in patients with metastatic castration-resistant prostate cancer (mCRPC), is associated with adverse events which may require dose reductions or discontinuation of treatment. We investigated the potential association of single-nucleotide polymorphisms (SNPs) in genes encoding drug transporters and drug-metabolizing enzymes with cabazitaxel toxicity, overall survival (OS) and pharmacokinetics (PK). Methods: A total of 128 cabazitaxel-treated mCRPC patients, of whom prospectively collected data on toxicity and OS were available and 24 mCRPC patients with available cabazitaxel PK measurements, were genotyped using genomic DNA obtained from EDTA blood. The SLCO1B1 (388A > G; *1B; rs2306283 and 521 T > C; *5; rs4149056 and haplotype SLCO1B1*15), SLCO1B3 (334 T > G; rs4149117), CYP3A4 (*22; rs35599367), CYP3A5 (*3; rs776746), ABCB1 (3435C > T; rs1045642), and TUBB1 (57 + 87A > C; rs463312) SNPs were tested for their association with clinical and PK parameters by univariate/multivariate logistic regression, log-rank test, or Kruskal–Wallis test. Results: The SLCO1B1*15 haplotype was significantly associated with a lower incidence of leukopenia and neutropenia (p = 0.020 and p = 0.028, respectively). Patients harboring a homozygous variant for SLCO1B1*1B experienced higher rate ≥ grade 3 (p = 0.042). None of the SNPs were associated with pharmacokinetics or OS. Conclusions: In this study, SLCO1B1 (SLCO1B1*15 and SLCO1B1*1B) was associated with cabazitaxel-induced adverse events in mCRPC patients. As the associations were opposite to previous studies in other drugs and contradicted an underlying pharmacokinetic rationale, these findings are likely to be false-positive and would ideally be validated with even larger (pharmacokinetic) cohorts
    • …
    corecore