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Clonal Hematopoiesis (CH) is a common, age-related phenomenon of growing scientific
interest, due to its association with hematologic malignancy, cardiovascular disease and
decreased overall survival. CH is commonly attributed to the preferential outgrowth
of a mutant hematopoietic stem cell (HSC) with enhanced fitness, resulting in clonal
imbalance. In-depth understanding of the relation between HSC clonal dynamics, CH
and hematologic malignancy requires integration of fundamental lineage tracing studies
with clinical data. However, this is hampered by lack of a uniform definition of CH
and by inconsistency in the analytical methods used for its quantification. Here, we
propose a conceptual and analytical framework for the definition and measurement of
CH. First, we transformed the conceptual definition of CH into the CH index, which
provides a quantitative measure of clone numbers and sizes. Next, we generated a set
of synthetic data, based on the beta-distribution, to simulate clonal populations with
different degrees of imbalance. Using these clonal distributions and the CH index as a
reference, we tested several established indices of clonal diversity and (in-)equality for
their ability to detect and quantify CH. We found that the CH index was distinct from
any of the other tested indices. Nonetheless, the diversity indices (Shannon, Simpson)
more closely resembled the CH index than the inequality indices (Gini, Pielou). Notably,
whereas the inequality indices mainly responded to changes in clone sizes, the CH index
and the tested diversity indices also responded to changes in the number of clones in a
sample. Accordingly, these simulations indicate that CH can result not only by skewing
clonal abundancies, but also by variation in their overall numbers. Altogether, our model-
based approach illustrates how a formalized definition and quantification of CH can
provide insights into its pathogenesis. In the future, use of the CH index or Shannon
index to quantify clonal diversity in fundamental as well as clinical clone-tracing studies
will promote cross-disciplinary discussion and progress in the field.

Keywords: hematopoiesis, clone, stem cell, clonal diversity, ageing, lineage tracing

INTRODUCTION

The dual ability of adult stem cells to self-renew and to produce all mature cell types is unique and
underlies tissue homeostasis, growth and (at least to some extent) tissue regeneration. Dysfunction
of tissue stem cells is thought to underlie several diseases, including hematopoietic failure and
cancer (1–4). Accordingly, assessing the number of stem cells and their clonal contribution to tissue
generation has been subject of scientific interest and controversy for decades (5–8).

Clone tracking has been used most extensively in the hematopoietic system, in part due to the
relative ease of sampling and potential for longitudinal assessment. Pioneering studies have used
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various clonal markers, such as viral integration sites, DNA
barcodes, transposons, mitochondrial DNA, X-chromosome
silencing, fluorescent tags or naturally occurring somatic
mutations, to trace hematopoietic stem cells (HSCs) in murine
xenografts, monkeys and humans (9–17). These studies estimate
that, at steady-state, human hematopoiesis is supported by
hundreds of thousands of HSCs (15, 16). In a healthy individual,
at any moment in time, the majority HSCs are assumed to
contribute more or less equally to hematopoiesis, albeit their
exact numbers and lineage choices remain controversial (11, 12,
16, 17). Deviations from this “clonal equilibrium” are considered
to result from heterogeneity in the competitive fitness of the
parental HSCs. Such heterogeneity may result from the age-
related accumulation of damage in HSCs and may predispose to
several hematologic diseases (15, 16).

The interest in HSC clone tracing has risen dramatically by
the recent discovery of clonal hematopoiesis (CH). CH is defined
as the detectable (above some arbitrary threshold) presence of
cancer-associated somatic mutations in an apparently healthy
blood system (18, 19). CH is present in >10% of individuals older
than 70 years and is associated with increased risk of hematologic
malignancy, cardiovascular disease and all-cause mortality (18–
20). Nonetheless, the absolute risk of hematologic cancer in
individuals with CH is low, and there is a need to identify features
of CH that predict leukemic progression versus those that do not.

To better understand the relation between HSC clonal
dynamics, CH and its progression toward hematologic
malignancy, it will be useful to integrate knowledge from
fundamental lineage tracing studies with clinical epidemiological
data on CH. However, to allow for such integration, several issues
need to be addressed. While the definition of the term “clone” is
intuitively well understood, the term “clonal hematopoiesis” is
less clear. In cell biology, the term “clone” refers to a population
of cells that are derived from the same ancestor, which can be
identified by the presence of certain unique, heritable markers
(6, 9). In clinical studies, the term “CH” refers to the presence
of one or a few driver mutations with a variant allele frequency
of at least ∼2%, while the overall number of HSC clones and
their relative sizes remain unreported (18, 19). As a result, the
processes and dynamics that underlie CH in mice as well as in
humans are difficult to compare and reconcile.

Here, we make an attempt to further formalize the definition
of CH and determine the direct consequences of such a definition.
This attempt employs markers of population diversity used to
quantify the abundance of CH clones within a heterogeneous
HSC population. We propose that this approach will allow for
a more reliable, quantitative measurement of CH, which can be
applied to different markers or platforms, in model organisms as
well as in humans.

MATERIALS AND METHODS

In silico Simulation of Clonal Skewing
and Richness
To allow in silico quantification of CH, we first generated a
set of synthetic data with enough diversity in clone sizes and

distributions. Out of the known data distributions, we decided
to use a beta distribution, with which it is relatively easy to
generate datasets of variable skewing. We generated a series of
20 beta distribution profiles with alpha and beta coefficients
changing reciprocally, from 1 to 20 and 20 to 1, respectively.
In this way, we obtained datasets of variable skewing, ranging
from an extremely left-shifted mean with right-skewed tail of
the distribution (many very small values and a few big, which is
the case in a highly (mono-)clonal distribution), to an extremely
right-shifted mean with left-skewed tail (many big values and
only a few small, Figures 1A,B). We combined this series of beta
distributions with a dataset of populations with diverse clonal
richness, ranging from 50 to 500 data values (clones) with steps
of 25 (19 populations in total). The resulting array of data (with
diverse skewing and richness, Figure 1C) was used to calculate
several indices of population diversity and equality: Shannon,
Simpson, Gini, and Pielou, as described below (and obviously the
CH index or ICH , after we defined it).

Population Richness
Population richness is defined as the simple number of clones in
a given sample. This is also known as the nominal count. The
more clones, the ‘richer’ the sample. Population richness does
not take into account the relative size of each clone. Thus, the
richness of a sample is as much affected by a small clone as by a
very large clone.

Shannon Diversity Index
Diversity of any population is not only determined by the number
of clones, but also by their sizes. An elegant solution to quantify
the diversity of such a population is the Shannon diversity index,
which is also known as the Shannon-Wiener index of simply the
Shannon index HSh:

HSh =

N∑
i = 1

piln(pi)

where, pi is the relative abundance of each ith clone and N is
the maximum number of clones in the sample. Notably, although
most studies use the natural logarithm, the base of the logarithm
used to calculate the Shannon index can be chosen freely, and
commonly used bases include logarithm base 2 and 10 (scikit-bio
uses variable base, default base in vegan (R) is exponent). If all
clones are of equal size, then pi = 1/N and HSh is maximal. If clone
sizes are not equal, then for each clone, pi reflects its abundance
divided by the total abundance of all other clones.

A remarkable feature of the Shannon index is that it can be
used to predict the number of clones (a.k.a. richness) C, while
taking into account their relative sizes:

CSh = exp(HSh)

The Shannon index is particularly useful in datasets with large
numbers of small clones/sequencing noise, as the contribution
of these clones to the overall diversity will be far lower than the
contribution of the larger clones. Therefore, the Shannon index is
relatively unaffected by (arbitrary) thresholds for clonal detection
and by low-frequency noise.
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FIGURE 1 | Simulation of population diversity based on the beta distribution. (A) Probability density distributions, based on the beta distribution, generated by
reciprocal variation of the alpha and beta coefficients. The orange curve represents the distribution for alpha = 2 and beta = 19 (many small clones and a few big),
the pink curve is the distribution for alpha = 19 and beta = 2 (many large clones and a few small). (B) Overview of all probability distributions tested. Note that these
vary from highly skewed to near-normal. (C) 3-dimensional depiction of the probability distributions shown in Figure 1B.

Simpson Index
The Simpson index (λ) is usually seen as alternative to the
Shannon index, and is defined as follows:

λ = 1−
N∑

i = 1

p2
i

Similar to the Shannon index, the Simpson index is maximal
when all clones are of the same size, and equal to zero when only
one clone is present.

Pielou Index
To quantify evenness in clonal sizes, we can use the Pielou index,
also known as the Pielou’s evenness index (21). The Pielou index
J can be calculated from the Shannon index and is defined as

follows:
J =

HSh

Hmax

where, HSh is the Shannon diversity index and Hmax is the
maximum possible value of H (i.e., if every clone is of equal size).
If all clones in a sample are of equal size, then J = 1. If there is a
very strong bias (i.e., one very big clone), J is close to zero.

Gini Index
Finally, the Gini index (also known as Gini coefficient) provides
an alternative method to quantify the clonal inequality of a
sample. The Gini index is commonly used in economics, as
a measure of inequality of income or wealth. It is defined
mathematically via the Lorenz curve, which plots the cumulative
frequency of a ranked population. The line at 45 degrees
represents a perfectly equal distribution in frequencies. In terms
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of clones, all clones are of equal size. The less equal the data
(the more difference in clone sizes), the more the Lorenz curve
deviates from the perfect diagonal. The Gini index G is derived
by comparing these curves, and is defined as:

G =
A

A + B

where, A is the area between the perfect diagonal and the Lorenz
curve, and B is the area below the Lorenz curve. The Gini index
can range from 0 (perfect equality, all clones are of equal size) to
1 (perfect inequality, one very large clone).

Programming Tools
All simulations were made in Python 3 on a regular laptop,
using standard python libraries: SciPy, Numpy, and the Scikit-
bio package (22–24). The beta distribution was generated using
Scipy.stats (scipy.stats.beta()) and beta random sampling with
numpy.random.beta() from the numpy package. All diversity and
(in)equality indexes are from skbio.diversity.alpha. In parallel,
the same simulations were done in R, using core functions
(beta distribution, dbeta(), rbeta()) and the following packages
for population indexes: vegan (25), reldist (26) and OTUtable
(27). For linear models, the python Statsmodels package was
used in python (olm()). In R the lm() core function was
employed. All scripts can be found on GitHub: https://github.
com/LeonidBystrykh/Measures_of_CH.

RESULTS

Formalizing the Conceptual Definition of
Clonal Hematopoiesis Into the CH-Index
A screen through the literature dedicated to CH in humans
provides lots of details regarding gene mutations, possible
biological effects etc. Surprisingly, it is difficult to trace a
quantitative and well-defined measure of the CH. Therefore, we
decided to (re)define it here, namely we first formalized the
conceptual definition of CH into a quantitative measure of clone
numbers and sizes.

Assuming a unimodal distribution of clone sizes, the clonal
composition of any sample can be seen as the sum of the number
of clones and their relative sizes. In other words, for each clone
I with relative size xi in the bone marrow (or any other stem cell
compartment) and amplification factor (relative contribution to
hematopoiesis)ai, the resulting clone size in blood will be aixi. For
the entire population of clones, their contribution, as measured in
blood can be quantified as:

CCH =

n∑
i = 1

aixi

In reality, during normal hematopoiesis, if we measure clones
and their sizes in blood, most of the time we do not know the
values of HSC sizes, x, nor their relative contribution coefficients
a in separate, rather we measure the resulting value aixi for
any clone i. If we deal with retro- or lentivirally transduced

stem cells (like in mouse models or gene therapy trials) (9,
10, 13, 28, 29) then estimation of these parameters becomes
theoretically possible.

In clinical studies on CH, not all clones in the blood, nor
in the bone marrow are analyzed (18–20, 30). Rather, these
studies rely on the detection of one or a few clones with somatic
mutations above a critical threshold for detection. Depending on
the sensitivity of the applied sequencing technique, this threshold
can vary from 2%, or 0.5%, or anything in between (19, 20, 31).
Consequently, we also introduced a threshold for detection into
the model, and defined the CH index (ICH) as the fraction of all
blood cells, which carry a genetic mark with a frequency above
this minimal threshold. Therefore, clonal index will be a sum of
all clonal contributions for clones:

ICH =

n∑
i = 1

aixi

for aixi > threshold

where, xi and ai have the same meaning as above, but the
index Ich counts only clonal contributions above the relevant
threshold. In most studies, clone size is expressed as a fraction
of the total count of all alleles. Therefore ICH is expressed as
a fraction of the total read counts for each particular mutation
detected. As an example, for a sample in which a single clone
passes the threshold for detection with a contribution coefficient
a of 0.2, the clonal index will be 0.2. If a sample contains two
detectable clones, of which one with a = 0.15, and another
with a = 0.05 (both above arbitrary threshold), the clonal index
will be 0.15+0.05 = 0.2. Note that ICH varies between 0 and 1,
where 0 represents case of a “normal” hematopoiesis (no big
clones detected), and 1 represents an extreme case of a clonal
hematopoiesis with profound dominance of a few clones. To
generate sufficient variation, we selected a threshold of ICH of
0.005 for the simulations described in this manuscript. Repeated
analyses, using alternative thresholds of 0.002 or 0.02, did not
affect our conclusions.

Simulation of Clonal Distributions
Next, we aimed to assess the capacity of the ICH , as well as
several existing indices of clonal diversity, to detect and quantify
CH. To this aim, we generated an array of data, based on
the beta distribution, representing populations with different
degrees of skewing and richness (Figures 1A–C, details in
Methods). As visualized in Figure 1, the resulting distributions
demonstrated a large variability in the degree of skewing. When
alpha <beta, the means of the distributions were shifted to
the left (many small values and a few big). When alpha and
beta are equal, the resulting distributions were close to normal.
When alpha >beta, the means of the distributions were shifted
to the right (many big values and a few small). The former
dataset reflects a strong clonal bias, whereas the latter has
the lowest bias.

Quantifying Clonality by the CH Index
For each combination of beta distribution and population
richness (), we calculated the ICH index (Figure 2A). As

Frontiers in Medicine | www.frontiersin.org 4 March 2022 | Volume 9 | Article 836141

https://github.com/LeonidBystrykh/Measures_of_CH
https://github.com/LeonidBystrykh/Measures_of_CH
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-836141 March 26, 2022 Time: 14:24 # 5

Bystrykh and Belderbos Measures of Clonal Hematopoiesis

described in the Methods section, this index represents the
sum of all observable clones and their relative sizes above the
arbitrary threshold. We noted that the ICH index responded
both to variations in population skewing and richness, and
that the impact of each parameter depended on the value of
the other. At very low levels of population richness, the ICH
remained non-zero at any degree of population skewing. To the
contrary, at high levels of population richness, ICH was relatively
stable and close to 0.

Other Measures of Diversity
Next, we asked how the ICH index compares to other
population indexes used in the biological literature. Therefore,
for the same datasets used to calculate ICH , we calculated
the values of the Shannon, Simpson, Gini and Pielou index
(Figures 2B–E). Interestingly, similar to ICH , both the Shannon
and Simpson indexes also responded to variation in clonal
sizes (a.k.a. richness) and skewing, but each in its own way
(and differently from ICH). While ICH decreased upon increased
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skewing, simulated using the series of 20 distributions shown in Figure 1 (starting from the lowest alpha and highest beta) and using a threshold of 0.005. (B–E) The
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population skewing or richness, the Simpson and Shannon
indexes increased at similar conditions. Remarkably, the Gini
and Pielou indexes showed a stark difference in their responses.
These indexes were practically insensitive to variations in
population richness and responded almost solely to variations in
population skewing.

Can One Index Predict the Value of
Another?
As each index responded to variations in skewing and richness
differently, we subsequently tested whether the CH-index could
be explained (predicted) by any combination of the other
four indexes. For this, we used an ordinary linear model,
which allowed us to see the fraction of the variation explained
as well as to assess which individual index contributed the
most to the model (Figure 3). Analysis showed that Shannon
and Simpson indexes, alone or in combination, explained the
greater part of the ICH (R-squared 0.83 for the Shannon index
only, 0.594 for the Simpson index only and 0.882 for both
indexes together). In contrast, the Gini and Pielou indexes
together explained only 0.092 (R-squared) of the variance.
When added to the Shannon and Simpson indexes, the Gini
index only added 0.05 to the explained variance (R-squared
improved from 0.883 to 0.888). The same happened if Pielou
index was added to the equation, instead of the Gini index.
Adding a fourth index (either Gini or Pielou) did not improve
the model further.

To conclude, this study indicates that the ICH index, as
it is formalized above, can be best quantified using indexes
of population diversity, in particular the Shannon diversity
index. In the future, more indexes can be tested and more
analysis will be needed to better understand what ICH actually
is in terms of population theory, which currently does not
include the ICH .

DISCUSSION

While our understanding of the pathogenesis and clinical
consequences of CH is gradually increasing, a few key elements
are still missing. In particular, uniform quantification of CH
is needed to avoid misunderstandings in the field. However,
currently, a commonly accepted quantitative measure of CH
is missing, and the characteristics of such a measure remain
unclear. In this manuscript, we translated the conceptual
definition of CH into a mathematical measure (ICH) of clone
numbers and sizes. Subsequently, we used this measure to
test the behavior of several existing indices of population
diversity and (in)equality. Our results imply that, while talking
about CH, we refer to a loss of population diversity. In the
current simulations, we demonstrate that CH can be achieved
by an increased skewing in clone sizes as well as by a
decreased number of clones. Therefore, in real life, CH may
not always reflect dominance of a clone with a higher and
biased contribution; it might also be a matter of a reduced
number of stem cells.

The dual nature of the ICH presented in this paper implies that
the etiology of CH may be of a dual kind as well. On the one
hand, the most commonly scenario describes CH as the result
of a gradual, age-dependent acquisition of somatic mutations in
hematopoietic progenitor cells (19, 32–35). Once one or a few of
these mutations confer a competitive advantage, the clonal mass
of the cells that carry these mutations increases. As the number of
mutations in stem cells increases gradually with age, so does the
risk of CH (15, 16). On the other hand, a reduction in the overall
number of stem cells may cause a similar effect, resulting in an
apparent increase in the relative size of the remaining clones.
Notably, these two scenarios are not mutually exclusive and likely
coexist, even within the same patient.

These dual scenarios have several consequences. First, they
provide an additional explanation for the increased prevalence

Frontiers in Medicine | www.frontiersin.org 6 March 2022 | Volume 9 | Article 836141

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-836141 March 26, 2022 Time: 14:24 # 7

Bystrykh and Belderbos Measures of Clonal Hematopoiesis

of CH in stem cell transplantation recipients (13, 36–39). As
these patients, as well as patients undergoing gene therapy, are
transplanted with only a fraction of the donor stem cell pool, the
clonal mass of each stem cell is likely higher compared to healthy
age-matched controls. Notably, we recently demonstrated that
the mutational consequences of transplantation on the donor
stem cells are generally negligible, suggesting that clonal stem
cell reduction may be particularly important in this setting (40).
Second, a similar phenomenon may apply to CH in patients
undergoing stem cell cytotoxic therapies (41, 42). In addition
to the DNA damage inflicted by these therapies, they may also
induce stem cell loss, thereby increasing the risk of CH. To
distinguish between these options, in future, it will be of interest
to relate the mutational signatures induced by these agents to
the signatures observed in post-therapy CH (43). Third, the
risk of hematologic malignancy may differ between individuals
with CH due to clonal dominance versus those with CH due
to clonal stem cell reduction. Discriminating between these
two scenarios, for instance by the type of mutation or by the
distribution of clone sizes (using the ICH or Shannon index),
might allow for a better prediction and risk-adjusted screening
of hematologic malignancies.

Application of the ICH in real-life requires knowledge of both
of its parameters, i.e., the contribution coefficient an and the
number of clonogenic cells, xn. Currently, these values are not
exactly known and difficult to estimate experimentally, although
not impossible and highly necessary. For instance, using DNA
barcoding, we were able to trace major clones in blood back to
HSC populations in the bone marrow (10, 44). In theory, the
same possibility exists for gene therapy trials. These trials provide
a unique opportunity to integrate lineage tracing of single HSCs
(e.g., using integration sites, barcoded vectors, etc.) with regular
analysis of clonal developments based on somatic mutations in
blood. Parallel assessment of single mutation VAFs as well as
overall clonality may provide insight into the origin and clinical
consequences of aberrant clones, after gene therapy and during
normal ageing. Furthermore, longitudinal assessment of ICH (or
of the Shannon index) in these individuals may allow early
detection of (vector-related) malignancies.

The feasibility of integrating knowledge from HSC lineage
tracing studies with somatic mutation profiles relies critically on
a uniform, quantitative definition of CH. Such a definition will
not only prevent miscommunication, but will also inform us
what kind of experimental data are required. Although data from
current publications allow for some quantification, the diversity
of sequencing strategies, detection methods and thresholds for
detection makes it difficult to compare and reconcile their results.
Here, we propose that the Shannon (or Simpson) diversity

indexes, which are well characterized and relatively threshold-
free, can be used to reliably detect clonal aberrations in a
population. These indexes are well-established in stem cell
lineage-tracing studies in mice (10, 45–47), as well in population
studies of all kinds. In theory, these indices can be applied to
unfiltered (whole genome or whole exome) sequencing data.
During polyclonal hematopoiesis with many small and constantly
changing clones (and which are difficult to discriminate from
sequencing noise), diversity will be maximal. Once one or
multiple clones in the population grow systematically, this may
be detected by a reduction in the Shannon or Simpson index.

Further development of the theoretical background and
technical measurement of CH is needed, to stimulate
experimental research and to improve our understanding
of clonal developments during normal aging, gene
therapy and leukemia.

DATA AVAILABILITY STATEMENT

The scripts and datasets for this study can be found on GitHub:
https://github.com/LeonidBystrykh/Measures_of_CH.

AUTHOR CONTRIBUTIONS

LB developed the theory and performed the computations.
MB provided the feedback, checked the analyses, and helped
refine the theory. Both authors wrote the manuscript and
made the figures.

FUNDING

This work was partially supported by the ARCH program
(a European Union’s Horizon 2020 Research and Innovation
Program) under Marie Skłodowska-Curie grant agreement
813091 (to LB). MB is supported by grants from the European
Hematology Association (Physician Scientist Grant), the Dutch
Research Council (VI.Veni.202.021), and a John Hansen
Grant from the DKMS.

ACKNOWLEDGMENTS

MB kindly acknowledges the Translational Research Training
for Hematology program of the EHA/ASH, for providing
mentorship and education.

REFERENCES
1. Greaves M, Maley CC. Clonal evolution in cancer. Nature. (2012) 481:306–13.

doi: 10.1038/nature10762
2. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution:

past, present and the future. Cell. (2017) 168:613–28. doi: 10.1016/j.cell.2017.
01.018

3. Maciejewski J, Anderson S, Katevas P, Young NS. Phenotypic and functional
analysis of bone marrow progenitor cell compartment in bone marrow

failure. Br J Haematol. (1994) 87:227–34. doi: 10.1111/j.1365-2141.1994.tb04
903.x

4. Cooper JN, Young NS. Clonality in context: hematopoietic clones in their
marrow environment. Blood. (2017) 130:2363–72. doi: 10.1182/blood-2017-
07-794362

5. Kretzschmar K, Watt FM. Lineage tracig. Cell. (2012) 148:33–45. doi: 10.1016/
j/cell.2012.01.002

6. Glauche I, Bystrykh L, Eaves C, Roeder I. Stem cell clonality –
theoretical concepts, experimental techniques, and clinical challenges.

Frontiers in Medicine | www.frontiersin.org 7 March 2022 | Volume 9 | Article 836141

https://github.com/LeonidBystrykh/Measures_of_CH
https://doi.org/10.1038/nature10762
https://doi.org/10.1016/j.cell.2017.01.018
https://doi.org/10.1016/j.cell.2017.01.018
https://doi.org/10.1111/j.1365-2141.1994.tb04903.x
https://doi.org/10.1111/j.1365-2141.1994.tb04903.x
https://doi.org/10.1182/blood-2017-07-794362
https://doi.org/10.1182/blood-2017-07-794362
https://doi.org/10.1016/j/cell.2012.01.002
https://doi.org/10.1016/j/cell.2012.01.002
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-836141 March 26, 2022 Time: 14:24 # 8

Bystrykh and Belderbos Measures of Clonal Hematopoiesis

Blood Cells Mol Dis. (2013) 50:232–40. doi: 10.1016/j.bcmd.2013.
01.007

7. Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, et al. Cancer
stem cell definitions and terminology: the devil is in the details. Nat Rev. (2012)
12:767–75. doi: 10.1038/nrc3368

8. Blanpain C, Simons BD. Unravelling stem cell dynamics by lineage tracing.
Nat Rev Mol Cell Biol. (2013) 14:489–502. doi: 10.1038/nrm3625

9. Bystrykh LV, Verovskaya E, Zwart E, Broekhuis M, de Haan G. Counting
stem cells: methodological constraints. Nat Methods. (2012) 9:567–74. doi:
10.1038/nmeth.2043

10. Gerrits A, Dykstra B, Kalmykowa OJ, Klauke K, Verovskaya E, Broekhuis MJC,
et al. Cellular barcoding tool for clonal analysis in the hematopoietic system.
Blood. (2010) 115:2610–8. doi: 10.1182/blood-2009-06-229757

11. Wu C, Li B, Lu R, Koelle SJ, Yang Y, Jares A, et al. Clonal tracking of rhesus
macaque hematopoiesis highlights a distinct lineage origin for natural killer
cells. Cell Stem Cell. (2014) 14:486–99. doi: 10.1016/j.stem.2014.01.020

12. Kim S, Kim N, Presson AP, Metzger ME, Bonifacino AC, Sehl M, et al.
Dynamics of HSPC repopulation in nonhuman primates revealed by a decade-
long clonal-tracking study. Cell Stem Cell. (2014) 14:473–85. doi: 10.1016/j.
stem.2013.12.012

13. Scala S, Basso-Ricci L, Dionisio F, Pellin D, Giannelli S, Salerio FA, et al.
Dynamics of genetically engineered hematopoietic stem and progenitor cells
after autologous transplantation in humans. Nat Med. (2018) 24:1683–90.
doi: 10.1038/s41591-018-0195-3

14. Nguyen LV, Pellacani D, Lefort S, Kannan N, Osako T, Makarem M, et al.
Barcoding reveals complex clonal dynamics of de novo transformed human
mammary cells. Nature. (2015) 528:267–71. doi: 10.1038/nature15742

15. Osorio FG, Rosendahl Huber A, Oka R, Verheul M, Patel SH, Hasaart K, et al.
Somatic mutations reveal lineage relationships and age-related mutagenesis in
human hematopoiesis. Cell Rep. (2018) 25:2308–16. doi: 10.1016/j.celrep.2018.
11.014

16. Lee-Six H, Øbro NF, Shepherd MS, Grossmann S, Dawson K, Belmonte M,
et al. Population dynamics of normal human blood inferred from somatic
mutations. Nature. (2018) 561:473–8. doi: 10.1038/s41586-018-0497-0

17. Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, Panero R, Patel SH, Jankovic
M, et al. Clonal analysis of lineage fate in native haematopoiesis. Nature. (2018)
553:212–6. doi: 10.1038/nature25168

18. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP,
et al. Clonal hematopoiesis of indeterminate potential and its distinction from
myelodysplastic syndromes. Blood. (2015) 126:9–16. doi: 10.1182/blood-2015-
03-631747

19. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al.
Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J
Med. (2014) 371:2488–98. doi: 10.1056/NEJMoa1408617

20. Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal
hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med.
(2017) 377:111–21. doi: 10.1056/NEJMoa1701719

21. Pielou EC. The measurement of diversity in different types of biological
collections. J Theor Biol. (1966) 13:131–44. doi: 10.1016/0022-5193(66)90
013-0

22. Van Rossum G, Drake FL. Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace (2009).

23. Jones E, Oliphant T, Peterson P. SciPy: Open Source Scientific Tools for
Python. (2001). Available online at: http://www.scipy.org (accessed December
13, 2021).

24. Harris CR, Millman KJ, van der Walt S, Gommers R, Virtanen P, Cournapeau
D, et al. Array programming with NumPy. Nature. (2020) 585:357–62. doi:
10.1038/s41586-020-2649-2

25. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al.
Vegan: Community Ecology Package. R Package Version 2.5-7. (n.d.). Available
online at: https://cran.r-project.org/package=vegan (accessed December 13,
2021).

26. Handcock MS. Relative Distribution Methods. Version 1.6-6. (2021). Available
online at: http://www.stat.ucla.edu/~handcock/RelDist/, https://CRAN.R-
project.org/package=reldist (accessed December 13, 2021).

27. Linz AM, Crary BC, Shade A, Owens S, Gilbert JA, Knight R, et al.
Bacterial community composition and dynamics spanning five years in

freshwater bog lakes. mSphere. (2017) 2:e00169–17. doi: 10.1128/mSphere.001
69-17

28. Belderbos ME, Jacobs S, Koster TK, Ausema A, Weersing E, Zwart E, et al.
Donor-to-donor heterogeneity in the clonal dynamics of transplanted human
cord blood stem cells in murine xenografts. Biol Blood Marrow Transplant.
(2020) 26:16–25.

29. Six E, Guilloux A, Denis A, Lecoules A, Magnani A, Vilette R, et al. Clonal
tracking in gene therapy atients reveals a diversity of human hematopoietic
differentiation programs. Blood. (2020) 135:1219–31. doi: 10.1182/blood.
2019002350

30. Boettcher S, Wilk CM, Singer J, Beier F, Burcklen E, Beisel C, et al.
Clonal hematopoiesis in donors and long-term survivors of related allogeneic
hematopoietic stem cell transplantation. Blood. (2020) 135:1548–59. doi: 10.
1182/blood.2019003079

31. Gibson CJ, Kim HT, Zhao L, Murdock HM, Hambley B, Ogata
A, et al. Donor clonal hematopoiesis and recipient outcomes after
transplantation. J Clin Oncol. (2021) 40:189–201. doi: 10.1200/JCO.21.
02286

32. Bowman RL, Busque L, Levine RL. Clonal hematopoiesis and evolution to
hematopoietic malignancies. Cell Stem Cell. (2018) 22:157–70. doi: 10.1016/
j.stem.2018.01.011

33. Silver AJ, Bick AG, Savona MR. Germline risk of clonal hematopoiesis.
Nat Rev Genet. (2021) 22:602–17. doi: 10.1038/s41576-021-00
356-6

34. Bick AG, Weinstock JS, Nandakumar SK, Fulco CP, Bao EL, Zekavat SM, et al.
Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature.
(2020) 586:763–8. doi: 10.1038/s41586-020-2819-2

35. Gao T, Ptashkin R, Bolton KL, Sirenko M, Fong C, Spitzer B, et al. Interplay
between chromosomal alterations and gene mutations shapes the evolutionary
trajectory of clonal hematopoiesis. Nat Commun. (2021) 12:338. doi: 10.1038/
s41467-020-20565-7

36. Lu R, Czechowicz A, Seita J, Jiang D, Weissman IL. Clonal-level lineage
commitment pathways of hematopoietic stem cells in vivo. Proc Natl Acad Sci
USA. (2019) 116:1447–56. doi: 10.1073/pnas.1801480116

37. Frick M, Chan W, Arends CM, Hablesreiter R, Halik A, Heuser M, et al.
Role of donor clonal hematopoiesis in allogeneic hematopoietic stem-cell
transplantation. J Clin Oncol. (2019) 37:375–85. doi: 10.1200/JCO.2018.79.
2184

38. Wong WH, Bhatt S, Trinkaus K, Pusic I, Elliott K, Mahajan N, et al.
Engraftment of rare, pathogenic donor hematopoietic mutations in unrelated
hematopoietic stem cell transplantation. Sci Transl Med. (2020) 12:eaax6249.
doi: 10.1126/scitranslmed.aax6249

39. Radtke S, Adair JE, Giese MA, Chan Y-Y, Norgaard ZK, Enstrom M, et al. A
distinct hematopoietic stem cell population for rapid multilineage engraftment
in nonhuman primates. Sci Transl Med. (2017) 9:eaan1145. doi: 10.1126/
scitranslmed.aan1145

40. de Kanter JK, Peci F, Bertrums E, Rosendahl Huber A, van Leeuwen A, van
Roosmalen MJ, et al. Antiviral therapy causes a unique mutational signature
in cancers of transplantation recipients. Cell Stem Cell. (2021) 28:1726–39.
doi: 10.1016/j.stem.2021.07.012

41. Bolton KL, Ptashkin RN, Gao T, Braunstein L, Devlin SM, Kelly D, et al. Cancer
therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet. (2020)
52:1219–26. doi: 10.1038/S41588-020-00710-0

42. Pich O, Cortes-Bullich A, Muinos F, Pratcorona M, Gonzalez-Perez A, Lopez-
Bigas N. The evolution of hematopoietic cells under cancer therapy. Nat
Commun. (2021) 12:4803. doi: 10.1038/s41467-021-24858-3

43. Kucab JE, Zou X, Morganella S, Joel M, Nanda S, Nagy E, et al. A compendium
of mutational signatures of environmental agents. Cell. (2019) 177:821–36.
doi: 10.1016/j.cell.2019.03.001

44. Belderbos ME, Jacobs S, Koster TK, Ausema A, Weersing E, Zwart E, et al.
Donor-to-donor heterogeneity in the clonal dynamics of transplanted human
cord blood stem cells?in murine xenografts. Biol Blood Marrow Transplant.
(2019) 26:16–25. doi: 10.1016/j.bbmt.2019.08.026

45. Belderbos ME, Koster T, Ausema B, Jacobs S, Sowdagar S, Zwart E, et al.
Clonal selection and asymmetric distribution of human leukemia in murine
xenografts revealed by cellular barcoding. Blood. (2017) 129:3210–20. doi:
10.1182/blood-2016-12-758250

Frontiers in Medicine | www.frontiersin.org 8 March 2022 | Volume 9 | Article 836141

https://doi.org/10.1016/j.bcmd.2013.01.007
https://doi.org/10.1016/j.bcmd.2013.01.007
https://doi.org/10.1038/nrc3368
https://doi.org/10.1038/nrm3625
https://doi.org/10.1038/nmeth.2043
https://doi.org/10.1038/nmeth.2043
https://doi.org/10.1182/blood-2009-06-229757
https://doi.org/10.1016/j.stem.2014.01.020
https://doi.org/10.1016/j.stem.2013.12.012
https://doi.org/10.1016/j.stem.2013.12.012
https://doi.org/10.1038/s41591-018-0195-3
https://doi.org/10.1038/nature15742
https://doi.org/10.1016/j.celrep.2018.11.014
https://doi.org/10.1016/j.celrep.2018.11.014
https://doi.org/10.1038/s41586-018-0497-0
https://doi.org/10.1038/nature25168
https://doi.org/10.1182/blood-2015-03-631747
https://doi.org/10.1182/blood-2015-03-631747
https://doi.org/10.1056/NEJMoa1408617
https://doi.org/10.1056/NEJMoa1701719
https://doi.org/10.1016/0022-5193(66)90013-0
https://doi.org/10.1016/0022-5193(66)90013-0
http://www.scipy.org
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://cran.r-project.org/package=vegan
http://www.stat.ucla.edu/~handcock/RelDist/
https://CRAN.R-project.org/package=reldist
https://CRAN.R-project.org/package=reldist
https://doi.org/10.1128/mSphere.00169-17
https://doi.org/10.1128/mSphere.00169-17
https://doi.org/10.1182/blood.2019002350
https://doi.org/10.1182/blood.2019002350
https://doi.org/10.1182/blood.2019003079
https://doi.org/10.1182/blood.2019003079
https://doi.org/10.1200/JCO.21.02286
https://doi.org/10.1200/JCO.21.02286
https://doi.org/10.1016/j.stem.2018.01.011
https://doi.org/10.1016/j.stem.2018.01.011
https://doi.org/10.1038/s41576-021-00356-6
https://doi.org/10.1038/s41576-021-00356-6
https://doi.org/10.1038/s41586-020-2819-2
https://doi.org/10.1038/s41467-020-20565-7
https://doi.org/10.1038/s41467-020-20565-7
https://doi.org/10.1073/pnas.1801480116
https://doi.org/10.1200/JCO.2018.79.2184
https://doi.org/10.1200/JCO.2018.79.2184
https://doi.org/10.1126/scitranslmed.aax6249
https://doi.org/10.1126/scitranslmed.aan1145
https://doi.org/10.1126/scitranslmed.aan1145
https://doi.org/10.1016/j.stem.2021.07.012
https://doi.org/10.1038/S41588-020-00710-0
https://doi.org/10.1038/s41467-021-24858-3
https://doi.org/10.1016/j.cell.2019.03.001
https://doi.org/10.1016/j.bbmt.2019.08.026
https://doi.org/10.1182/blood-2016-12-758250
https://doi.org/10.1182/blood-2016-12-758250
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-836141 March 26, 2022 Time: 14:24 # 9

Bystrykh and Belderbos Measures of Clonal Hematopoiesis

46. Verovskaya E, Broekhuis MJC, Zwart E, Weersing E, Ritsema M, Bosman LJ,
et al. Asymmetry in skeletal distribution of mouse hematopoietic stem cell
clones and their equilibration by mobilizing cytokines. J Exp Med. (2014)
211:487–97. doi: 10.1084/jem.20131804

47. Verovskaya E, Broekhuis MJC, Zwart E, Ritsema M, van Os R, de Haan G, et al.
Heterogeneity of young and aged murine hematopoietic stem cells revealed by
quantitative clonal analysis using cellular barcoding. Blood. (2013) 122:523–32.
doi: 10.1182/blood-2013-01-481135

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Bystrykh and Belderbos. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Medicine | www.frontiersin.org 9 March 2022 | Volume 9 | Article 836141

https://doi.org/10.1084/jem.20131804
https://doi.org/10.1182/blood-2013-01-481135
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles

	Measures of Clonal Hematopoiesis: Are We Missing Something?
	Introduction
	Materials and Methods
	In silico Simulation of Clonal Skewing and Richness
	Population Richness
	Shannon Diversity Index
	Simpson Index
	Pielou Index
	Gini Index
	Programming Tools

	Results
	Formalizing the Conceptual Definition of Clonal Hematopoiesis Into the CH-Index
	Simulation of Clonal Distributions
	Quantifying Clonality by the CH Index
	Other Measures of Diversity
	Can One Index Predict the Value of Another?

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


