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To the Editor:

Relapse affects ~10% of children diagnosed with acute
lymphoblastic leukemia (ALL), and is the leading cause of
cancer-related mortality in children, urging for novel diag-
nostic and therapeutic strategies [1–3]. ALL is genetically
heterogeneous, consisting of multiple clones with distinct
genomic aberrations, which may alter essential cell func-
tions (e.g. proliferation, differentiation, or chemotherapeutic
sensitivity) [4]. Furthermore, spatial heterogeneity (i.e.
diversity in the localization of ALL clones) may contribute
to disease progression [5]. In solid tumors, it is commonly
accepted that malignant cells first proliferate at the site of
origin, and only later metastasize to distant sites. Here, they
may undergo further clonal selection and evolution, result-
ing in genomic differences between the primary tumor and
its metastases [6–8]. In contrast, although progenitor B-cell
ALL (B-ALL) is thought to originate in the bone marrow,
its exact site of origin and patterns of migration are
unknown. Previously, we and others found that patient-
derived B-ALL clones are asymmetrically distributed in
murine xenografts [5, 9]. This skeletal asymmetry is rele-
vant both from a biologic and clinical perspective, as it
implies that sampling of a single site may not fully reflect
the total body clonal composition, allowing for certain

clones to remain undetected. However, as these previous
studies only sampled a limited number of anatomic sites and
did not include quantitative analysis, the quantitative dis-
tribution of leukemia clones across the total body is
unknown. To assess the quantitative distribution of leuke-
mia clones, we transplanted barcoded patient-derived
B-ALL cells in Nod/SCID/IL2Rγ−/− (NSG) mice and deter-
mined the leukemia cell content and barcode complexity in
individual anatomical locations during different stages of
disease (Supplementary methods).

In total, serially transplanted barcoded leukemia cells of
three (out of five) patient samples engrafted successfully in
28 recipients (Supplementary Table 1). Using a quantitative
method for leukemia-cell detection (Fig. 1a, Supplementary
Fig. 1A, B), we showed that at end-stage leukemia, the total
murine xenograft harbored 260 × 106 ± 115 × 106 human
leukemia cells (mean ± SD of ALL-16, ALL-17, and ALL-
19; Supplementary Fig. 2A–C). Of these, 60 ± 15% were
located in the bone marrow and 40 ± 15% in extramedullary
locations. The leukemia cell content (i.e. the absolute
number of leukemia cells) was highly variable between
anatomic locations (Fig. 1b, Supplementary Fig. 2D, E),
with the consistent observation that the majority of leuke-
mia cells were located in the spine (median: 25%, IQR:
20–30%) and spleen (median: 30%, IQR: 20–40%; Fig. 1c,
Supplementary Fig. 2F, G). On the contrary, the blood and
pelvis — locations that are routinely sampled for clinical
diagnosis and follow-up — only contained a median of
respectively 0.06% (IQR: 0.03–0.2%) and 9% (IQR:
8–11%) of the total body leukemia cell content.

We noted that the leukemia cell content in the same bone
marrow location was markedly similar across patient samples
and xenografts (Fig. 1b, Supplementary Fig. 2D, E). For
example, the femur consistently contained 20 × 106 leukemia
cells (median of ALL-16, ALL-17, and ALL-19; IQR:
10–30 × 106). In contrast, the leukemia cell content in extra-
medullary locations was more variable. This variability was
quantified by the quartile coefficient of dispersion, which was
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significantly lower in bone marrow locations (median: 0.20,
IQR: 0.15–0.25) compared with extramedullary sites (med-
ian: 0.45; IQR: 0.35–0.70, p < 0.0001, Fig. 1d). These data

indicate that the leukemia cell content in distinct bone mar-
row sites at end-stage disease is highly predictable, whereas
the content in extramedullary sites is more variable.
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To address whether the carrying capacity of the bone
dictates its leukemia cell content, we compared the number
of hematopoietic cells and LSK-SLAM cells in bones of
healthy NSG mice with that of mice transplanted with
leukemia cells. In total, healthy mice harbored a median of
175 × 106 (IQR: 165 × 106–195 × 106) hematopoietic cells
in their bone marrow (Supplementary Fig. 3A). The dis-
tribution of these cells across the different bone marrow
locations was markedly comparable with the distribution of
leukemia cells (Supplementary Fig. 3B). We found a cor-
relation of 0.79 ± 0.04 between the hematopoietic cell dis-
tribution in leukemic and healthy mice (Spearman rho, p <
0.001, Fig. 1e). Similar observations were made when
assessing the more stringently defined population of LSK-
SLAM cells (Spearman rho: 0.62 ± 0.03, p < 0.001, Sup-
plementary Fig. 3C–E).

If the size of the bone indeed dictates its leukemia cell
content, one might postulate that saturation occurs during
disease progression. Hereto, we assessed the leukemia cell
content across the murine skeleton over time (Supplemen-
tary Fig. 4.1A). We demonstrate that the total white blood
cell (WBC) content in bone marrow of leukemic mice
reached a plateau of ~150 × 106 cells (range 140–160 × 106,
Fig. 1f) from 56 days after transplantation. This plateau was

primarily due to loss of healthy WBCs throughout disease
progression, whereas the leukemia cell content continued to
increase over time. Similar patterns were observed when
bone marrow locations were analyzed separately (Supple-
mentary Fig. 4.2A–G). In parallel, we observed an expo-
nential increase in the number of splenic leukemia cells, and
weight of the spleen (Supplementary Fig. 4.1B–D). Even at
late stages of disease, no plateau was reached. Together, this
suggests that the size of the bone restricts its leukemia cell
content, resulting in competitive loss of healthy WBCs and
migration of leukemic blasts to extramedullary sites.

Next, we asked whether bones with a higher leukemia cell
content also contained more clones. If so, this would imply that
larger locations (by chance) would be more likely to harbor
relapsing clones. Similar to our previous work, cellular bar-
coding revealed that patient-derived leukemia clones were
asymmetrically distributed across the bone marrow locations,
whereas their distribution was more homogeneous across
extramedullary sites (Fig. 2a, b, Supplementary Fig. 5.1A–F)
[5]. Notably, in contrast to the marked variation in the leukemia
cell content between small and large bones (Fig. 1b, Supple-
mentary Fig. 2D, E), the number of barcodes varied only
marginally across locations (Supplementary Fig. 5.2A–C). In
larger bones (e.g. spine), barcodes were generally larger,
whereas smaller bones (e.g. sternum), generally contained
smaller barcodes (Supplementary Fig. 5.3A–D). Furthermore,
we observed that barcodes, which were small in the overall
murine xenograft, were located in a single location (Supple-
mentary Fig. 5.3E–H), whereas larger barcodes were often
present in multiple sites. Upon serial transplantation of ALL-
17, the number of leukemia clones was reduced by ~40%
(Supplementary Fig. 5.4A, B), and their distribution was more
homogeneous compared with the primary recipients (confirmed
by the Spearman rank analysis, Supplementary Fig. 5.4A, C).
These data once more suggest that bone size may be an
important determinant of leukemic cell content and growth.

As single-site sampling is a common practice in the
clinic and in experimental studies [10–12], we assessed to
what extent blood and pelvis reflect the overall barcode
complexity. At sacrifice, 40–60% of the total body leukemia
clones were detected in blood, whereas the remainder
stayed undetected (Fig. 2c, Supplementary Fig. 5.5A–C).
Detectable barcodes in the blood had an overall
frequency that was significantly higher than those that
remained undetected (p < 0.0001, Fig. 2d, Supplementary
Fig. 5.6A–C). Of the undetected barcodes, 13–53% were
detectable in blood samples drawn prior to sacrifice (Sup-
plementary Fig. 5.7A–F), and 20–45% of the barcodes were
never seen in blood at any measured time point. Assessment
of the pelvis showed similar results (Fig. 2e, Supplementary
Fig. 5.5A–C, 5.6D–F). Furthermore, combined analysis of
both locations only covered 53–66% of the total body
leukemia barcodes (Fig. 2c, Supplementary Fig. 5.5A–C).

Fig. 1 The anatomic distribution of human leukemia cells in
murine xenografts is proportional to and limited by the com-
partment size. a Experimental design to quantify the leukemia cell
content. Patient-derived bone marrow cells were — directly or derived
from primografts — barcoded. Barcoded leukemia cells were sorted
for GFP and transplanted into sublethally irradiated NSG mice. ALL-
16 and ALL-17 were serially transplanted. Individual locations were
analyzed for leukemia cell content and barcode composition. The
absolute cell concentration (hematology analyzer) and cell population
frequency (flow cytometry) were used to calculate the leukemia cell
content. b The leukemia cell content in the individual locations of
murine xenografts transplanted with ALL-17. Symbols refer to pri-
mary (circle) and secondary (triangle) recipients of barcoded leukemia
cells. c The relative contribution of each anatomical location to the
total body leukemia cell content. Gray squares; pelvis of recipient 3
was not sampled and is the average of recipient 4 and 5; hind legs of
recipient 6 were analyzed together with pelvis. d Quartile coefficient of
dispersion (QCD) values, reflecting variability across the xenografts
per individual location per patient sample (n= 3). QCD values were
grouped by bone marrow and extramedullary sites. Each symbol
represents a patient sample: ALL-16 (circle), ALL-17 (square), and
ALL-19 (triangle). Statistical analysis: two-sided Mann–Whitney U
test. e Correlation between the number of hematopoietic cells in the
bone marrow of leukemic (n= 16) and healthy (n= 4) NSG mice.
Hereto, we used a random-comparison model which randomly
assigned one out of the four healthy mice to one out of the sixteen
leukemic mice to calculate the correlation (n= 1000 random com-
parisons). Data are expressed as mean ± SD. f The absolute number of
WBCs in the total bone marrow of leukemic mice during disease
progression. Distinctions were made between leukemic cells (light
blue), healthy murine WBCs (dark blue), and the total number of
WBCs (light green). Every dot represents a mouse. Smoothing method
‘loess’ with confidence interval set at 95%. Abbreviations: bone
marrow (BM), extramedullary (EM), white blood cells (WBC).
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These data indicate that single-site sampling results in an
underestimation of the clonal complexity of the disease. As
each site contains unique clones (Fig. 2a, b, Supplementary
Fig. 5.1A–F), one would need to sample every location to
fully capture the total clonal complexity.

To summarize, we demonstrate that, at end-stage dis-
ease, murine xenografts harbor millions of human leuke-
mia cells, with ~10% localized in blood and pelvis.
Leukemia cells are derived from hundreds of leukemia-

propagating cells (LPCs), which are asymmetrically dis-
tributed across skeletal sites [5, 9]. We demonstrate that,
sampling of a single-site allows for half of the LPC clones
to remain undetected. Therefore, multi-site sampling of
xenografts will increase the yield of cells for experimental
analysis and provide a more in-depth view of the clonal
heterogeneity.

These observations are in apparent contrast with
clonal analysis of immunoglobulin heavy chain (IgH)

Fig. 2 Single-site sampling results in underestimation of total-body
leukemia clonal complexity. a, b Number of (non-)overlapping bar-
codes in the bone marrow and extramedullary locations. Barcode
analysis was restricted to the top 85% most abundant barcodes to
prevent false-positive barcode calling. c Number of (non-)overlapping
barcodes from the top 85% most abundant barcodes in the blood, pelvis

and remaining body. d, e Overall barcode frequency of the top 85%
most abundant barcodes that are detected or remain undetected when
blood or pelvis was sampled at end-stage leukemia (one representative
recipient). Statistical analysis: two-sided Mann–Whitney U test, *p <
0.0001.
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rearrangements in patients, which report a symmetric dis-
tribution with >80% of IgH clones present in blood and two
bone marrow sites [13]. This discrepancy may be due to the
choice of marker, as one IgH clone can be represented by
multiple LPCs. Furthermore, the observed level of (a)
symmetry may depend on the number and type of sites
sampled. Although murine xenografts lack human niche
factors, and may be subject to transplantation-induced clo-
nal selection [5, 14], they provide the unique advantage of
allowing sampling of nearly every cell in a given location
and nearly every location in the murine body. Last, we
previously showed that the degree of asymmetry depends
on the number of LPCs, with more asymmetry when fewer
LPCs are present [15]. This may suggest that failure to
detect a relapsing clone in clinical patients may not be due
to its presence below detection limits of current tests, but to
its presence in a non-sampled location. Future studies in
chemotherapy-treated xenografts and/or clinical patients
will be needed to determine whether treatment impacts
on clonal asymmetry, and whether multi-site sampling
improves diagnostics, monitoring and treatment-decisions
of patients with ALL.
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