31 research outputs found

    Activation of IκB Kinase by Herpes Simplex Virus Type 1 A NOVEL TARGET FOR ANTI-HERPETIC THERAPY

    Get PDF
    Herpes simplex viruses (HSV) are ubiquitous pathogens causing a variety of diseases ranging from mild illness to severe life-threatening infections. HSV utilize cellular signaling pathways and transcription factors to promote their replication. Here we report that HSV type 1 (HSV-1) induces persistent activation of transcription factor NF-κB, a critical regulator of genes involved in inflammation, by activating the IκB kinase (IKK) in the early phase of infection. Activated NF-κB enhances HSV-1 gene expression. HSV-1-induced NF-κB activation is dependent on viral early protein synthesis and is not blocked by the anti-herpetic drug acyclovir. IKK inhibition by the anti-inflammatory cyclopentenone prostaglandin A1 blocks HSV-1 gene expression and reduces virus yield by more than 3000-fold. The results identify IKK as a potential target for anti-herpetic drugs and suggest that cyclopentenone prostaglandins or their derivatives could be used in the treatment of HSV infection

    From Targeted Quantification to Untargeted Metabolomics

    Get PDF
    Metabolomics is an emerging and rapidly evolving technology tool, which involves quantitative and qualitative metabolite assessments science. It offers tremendous promise for different applications in various fields such as medical, environmental, nutrition, and agricultural sciences. Metabolomic approach is based on global identification of a high number of metabolites present in a biological fluid. This allows to characterize the metabolic profile of a given condition and to identify which metabolites or metabolite patterns may be useful in the discrimination between different groups. The use of one mass spectrometry (MS) platform from targeted quantification to untargeted metabolomics will make more efficient workflows in many fields and should allow projects to be more easily undertaken and realized. Metabolomics can be divided into non-targeted and targeted. The first one can analyze metabolites derived from the organisms comprehensively and systematically, so it is an unbiased metabolomics analysis that can discover new biomarkers. Targeted metabolomics, on the other hand, is the study and analysis of specific metabolites. Both have their own advantages and disadvantages, and are often used in combination for discovery and accurate weight determination of differential metabolites, and allow in-depth research and analysis of subsequent metabolic molecular markers. Targeted and non-targeted metabolomics are involved in food identification, disease research, animal model verification, biomarker discovery, disease diagnosis, drug development, drug screening, drug evaluation, clinical plant metabolism and microbial metabolism research. The aim of this chapter is to highlight the versatility of metabolomic analysis due to both the enormous variety of samples and the no strict barriers between quantitative and qualitative analysis. For this purpose, two examples from our group will be considered. Using non-targeted metabolomics in opposite Antarctic cryptoendolytic communities exposed to the sun, we revealed specific adaptations. Instead, through the targeted metabolomics applied to the urine during childbirth, we identified a different distribution of specific metabolites and the metabolic differences allowed us to discriminate between the two phases of labor, highlighting the metabolites most involved in the discrimination. The choice of these two approaches is to highlight that metabolomic analysis can be applied to any sample, even physiologically and metabolomically very distant, as can be microorganisms living on Antarctic rocks and biological fluids such as urine

    Extracellular serine empowers epidermal proliferation and psoriasis-like symptoms

    Get PDF
    The contribution of nutrient availability to control epidermal cell proliferation, inflammation, and hyperproliferative diseases remains unknown. Here, we studied extracellular serine and serine/glycine metabolism using human keratinocytes, human skin biopsies, and a mouse model of psoriasis-like disease. We focused on a metabolic enzyme, serine hydroxymethyltransferase (SHMT), that converts serine into glycine and tetrahydrofolate-bound one‑carbon units to support cell growth. We found that keratinocytes are both serine and glycine auxotrophs. Metabolomic profiling and hypoxanthine supplementation indicated that SHMT silencing/inhibition reduced cell growth through purine depletion, leading to nucleotide loss. In addition, topical application of an SHMT inhibitor suppressed both keratinocyte proliferation and inflammation in the imiquimod model and resulted in a decrease in psoriasis-associated gene expression. In conclusion, our study highlights SHMT2 activity and serine/glycine availability as an important metabolic hub controlling both keratinocyte proliferation and inflammatory cell expansion in psoriasis and holds promise for additional approaches to treat skin diseases

    Epigenetics: an Opportunity to Shape Innate and Adaptive Immune Responses

    Get PDF
    Epigenetics connects genetic and environmental factors: it includes DNA methylation, histone post-translational modifications and the regulation of chromatin accessibility by non-coding RNAs, all of which control constitutive or inducible gene transcription. This plays a key role in harnessing the transcriptional programs of both innate and adaptive immune cells due to its plasticity and environmental-driven nature, piloting myeloid and lymphoid cell fate decision with no change in their genomic sequence. In particular, epigenetic marks at the site of lineage specific transcription factors and maintenance of cell type-specific epigenetic modifications, referred to as "epigenetic memory", dictate cell differentiation, cytokine production and functional capacity following repeated antigenic exposure in memory T cells. Moreover, metabolic and epigenetic reprogramming occurring during a primary innate immune response leads to enhanced responses to secondary challenges, a phenomenon known as "trained immunity". Here we discuss how stable and dynamic epigenetic states control immune cell identity and plasticity in physiological and pathological conditions. Dissecting the regulatory circuits of cell fate determination and maintenance is of paramount importance for understanding the delicate balance between immune cell activation and tolerance, in healthy conditions and in autoimmune diseases. This article is protected by copyright. All rights reserved

    2-Pentadecyl-2-oxazoline ameliorates memory impairment and depression-like behaviour in neuropathic mice: possible role of adrenergic alpha2- and H3 histamine autoreceptors

    Get PDF
    Neuropathic pain (NP) remains an untreatable disease due to the complex pathophysiology that involves the whole pain neuraxis including the forebrain. Sensory dysfunctions such as allodynia and hyperalgesia are only part of the symptoms associated with neuropathic pain that extend to memory and affectivity deficits. The development of multi-target molecules might be a promising therapeutic strategy against the symptoms associated with NP. 2-pentadecyl-2-oxazoline (PEA-OXA) is a plant-derived agent, which has shown effectiveness against chronic pain and associated neuropsychiatric disorders. The molecular mechanisms by which PEA-OXA exerts its effects are, however, only partially known. In the current study, we show that PEA-OXA, besides being an alpha2 adrenergic receptor antagonist, also acts as a modulator at histamine H3 receptors, and report data on its effects on sensory, affective and cognitive symptoms associated with the spared nerve injury (SNI) model of neuropathic pain in mice. Treatment for 14 days with PEA-OXA after the onset of the symptoms associated with neuropathic pain resulted in the following effects: (i) allodynia was decreased; (ii) affective/cognitive impairment associated with SNI (depression, spatial, and working memories) was counteracted; (iii) long-term potentiation in vivo in the lateral entorhinal cortex-dentate gyrus (perforant pathway, LPP) was ameliorated, (iv) hippocampal glutamate, GABA, histamine, norepinephrine and dopamine level alterations after peripheral nerve injury were reversed, (v) expression level of the TH positive neurons in the Locus Coeruleus were normalized. Thus, a 16-day treatment with PEA-OXA alleviates the sensory, emotional, cognitive, electrophysiological and neurochemical alterations associated with SNI-induced neuropathic pain

    Hyperactive HRAS dysregulates energetic metabolism in fibroblasts from patients with Costello syndrome via enhanced production of reactive oxidizing species

    Get PDF
    Germline-activating mutations in HRAS cause Costello syndrome (CS), a cancer prone multisystem disorder characterized by reduced postnatal growth. In CS, poor weight gain and growth are not caused by low caloric intake. Here, we show that constitutive plasma membrane translocation and activation of the GLUT4 glucose transporter, via reactive oxygen species-dependent AMP-activated protein kinase α and p38 hyperactivation, occurs in primary fibroblasts of CS patients, resulting in accelerated glycolysis and increased fatty acid synthesis and storage as lipid droplets. An accelerated autophagic flux was also identified as contributing to the increased energetic expenditure in CS. Concomitant inhibition of p38 and PI3K signaling by wortmannin was able to rescue both the dysregulated glucose intake and accelerated autophagic flux. Our findings provide a mechanistic link between upregulated HRAS function, defective growth and increased resting energetic expenditure in CS, and document that targeting p38 and PI3K signaling is able to revert this metabolic dysfunction.n

    On the Fine-Tuning of the Stick-Beam Wing Dynamic Model of a Tiltrotor: A Case Study

    No full text
    The T-WING project, a CS2-CPW (Clean Sky 2 call for core partner waves) research initiative within FRC IADP (Fast Rotor-Craft Innovative Aircraft Demonstrator Platform), focuses on developing, qualifying and testing the new wing of the Next-Generation Civil Tilt-Rotor (NGCTR). This paper introduces a case study about a methodology for refining the stick-beam model for the NGCTR wing, aligning it with the GFEM (Global Finite Element Model) wing’s dynamic characteristics in terms of modal frequencies and mode shapes. The initial stick-beam model was generated through the static condensation of the GFEM wing. The tuning process was formulated as an optimization problem, adjusting beam properties to minimize the sum of weighted quadratic errors in modal frequencies and Modal Assurance Criterion (MAC) values. Throughout the optimization, the MAC analysis ensured that the target modes were tracked, and, at each iteration, a new set of variable estimates were determined based on the gradient vector and Hessian matrix of the objective function. This methodology effectively fine-tunes the stick-beam model for various mass cases, such as maximum take-off weight (MTOW) and maximum zero-fuel weight (MZFW)

    Testosterone replacement therapy in insulin-sensitive hypogonadal men restores phosphatidylcholine levels by regulation of arachidonic acid metabolism

    No full text
    Male hypogonadism is notoriously associated with altered lipid metabolism. In this study, we performed an untargeted mass spectrometry-based profiling of plasma lipids from twenty healthy and twenty hypogonadal men before and after testosterone replacement therapy (TRT) for 60 days. Results demonstrated that hypogonadism was associated with a significant increase in sphingomyelin (SM), whereas phosphatidylcholine (PC) was mainly cleaved by activated phospholipase-A2 into lysophosphatidylcholine (LPC). In hypogonadal patients, arachidonic acid (AA), also produced through the latter cleavage, was prevalently bio-transformed into leukotriene B4 (LTB4) and not into endoperoxides from which prostaglandins and thromboxanes are derived. Interestingly, upon testosterone treatment SM, PC and LPC returned to levels similar to controls. Also, AA was newly converted into prostaglandin-A2, thromboxane-A2 and 5(S)-hydroxyeicosatetraenoic acid (HETE), suggesting that testosterone probably plays a role in controlling hypogonadal alterations above reported.n
    corecore