105 research outputs found

    ICSBP Is Essential for the Development of Mouse Type I Interferon-producing Cells and for the Generation and Activation of CD8α+ Dendritic Cells

    Get PDF
    Interferon (IFN) consensus sequence-binding protein (ICSBP) is a transcription factor playing a critical role in the regulation of lineage commitment, especially in myeloid cell differentiation. In this study, we have characterized the phenotype and activation pattern of subsets of dendritic cells (DCs) in ICSBP−/− mice. Remarkably, the recently identified mouse IFN-producing cells (mIPCs) were absent in all lymphoid organs from ICSBP−/− mice, as revealed by lack of CD11clowB220+Ly6C+CD11b− cells. In parallel, CD11c+ cells isolated from ICSBP−/− spleens were unable to produce type I IFNs in response to viral stimulation. ICSBP−/− mice also displayed a marked reduction of the DC subset expressing the CD8α marker (CD8α+ DCs) in spleen, lymph nodes, and thymus. Moreover, ICSBP−/− CD8α+ DCs exhibited a markedly impaired phenotype when compared with WT DCs. They expressed very low levels of costimulatory molecules (intercellular adhesion molecule [ICAM]-1, CD40, CD80, CD86) and of the T cell area-homing chemokine receptor CCR7, whereas they showed higher levels of CCR2 and CCR6, as revealed by reverse transcription PCR. In addition, these cells were unable to undergo full phenotypic activation upon in vitro culture in presence of maturation stimuli such as lipopolysaccharide or poly (I:C), which paralleled with lack of Toll-like receptor (TLR)3 mRNA expression. Finally, cytokine expression pattern was also altered in ICSBP−/− DCs, as they did not express interleukin (IL)-12p40 or IL-15, but they displayed detectable IL-4 mRNA levels. On the whole, these results indicate that ICSBP is a crucial factor in the regulation of two possibly linked processes: (a) the development and activity of mIPCs, whose lack in ICSBP−/− mice may explain their high susceptibility to virus infections; (b) the generation and activation of CD8α+ DCs, whose impairment in ICSBP−/− mice can be responsible for the defective generation of a Th1 type of immune response

    Role of endogenous interferon and LPS in the immunomodulatory effects of bovine lactoferrin in murine peritoneal macrophages

    Get PDF
    Lactoferrin (Lf) plays an important role in host defense against infection and excessive inflammation. Although the mechanisms underlying its immunomodulatory properties have not been fully elucidated yet, recent evidence suggests that some of these effects may be related to its capacity to form complexes with LPS. We report that the culture of resting mouse peritoneal macrophages (PM) with bovine Lf (bLf), prior to infection with the vesicular stomatitis virus (VSV), resulted in a significant reduction of virus yield with respect to control cultures. The antiviral activity of bLF was related to its capacity of inducing IFN-α/β expression, which in turn inhibited VSV replication. Indeed, the accumulation of IFN-β but not of IFNα 1-2 transcripts was up-modulated markedly early after bLf addition. Furthermore, bLf did not exert any antiviral activity in the presence of neutralizing antibodies to IFN-α/β in PM from wildtype mice, as well as in PM from mice genetically defective for the response to IFN. The antiviral activity of bLf relied on its intrinsic capacity to bind LPS, as this protein did not induce IFN expression in PM from LPS-hyporesponsive mice. It is interesting that this LPS-binding property was dispensable for the production of TNF-α, which also occurred in LPS-hyporesponsive mice. Overall, these results indicate that some of the immunomodulatory effects ascribed to Lf may be related to its capacity to favor Type I IFN expression and argue in favor of an important role of the LPS-binding feature and TLR4 in some of the effects ascribed to this molecule. © Society for Leukocyte Biology

    A Contribution of Mouse Dendritic Cell–Derived IL-2 for NK Cell Activation

    Get PDF
    Dendritic cells (DCs) play a predominant role in activation of natural killer (NK) cells that exert their functions against pathogen-infected and tumor cells. Here, we used a murine model to investigate the molecular mechanisms responsible for this process. Two soluble molecules produced by bacterially activated myeloid DCs are required for optimal priming of NK cells. Type I interferons (IFNs) promote the cytotoxic functions of NK cells. IL-2 is necessary both in vitro and in vivo for the efficient production of IFNγ, which has an important antimetastatic and antibacterial function. These findings provide new information about the mechanisms that mediate DC–NK cell interactions and define a novel and fundamental role for IL-2 in innate immunity

    The European Research Infrastructures of the ESFRI Roadmap in Biological and Medical Sciences: status and perspectives

    Get PDF
    Introduction. Since 2002, the European Strategy Forum on Research Infrastructures  identified  the  needs  for  Research  Infrastructures  (RIs)  in  Europe  in  priority  fields  of  scientific research and drafted a strategic document, the ESFRI Roadmap, defining the  specific RIs essential to foster European research and economy. The Biological and Medical Sciences RIs (BMS RIs) were developed thanks to the active participation of many  institutions  in  different  European  member  states  associated  to  address  the  emerging  needs in biomedicine and, among these, the Italian National Institute of Health (ISS),  in virtue of its role in public health and research, has been specifically involved in the  national development and implementation of three RIs: the Biobanking and Biomolecu-lar Resources Research Infrastructure (BBMRI), the European Advanced Translational  Research Infrastructure in Medicine (EATRIS) and the European Clinical Research Infrastructures Network (ECRIN). Aim.  This  article  outlines  the  design  and  development  of  these  RIs  up  to  the  recent  achievement of the ERIC status, their importance in the Horizon 2020 programme and  their societal and economic potential impact, with special attention to their development  and significance in Italy. Conclusions.  The  ISS  plays  a  unique  role  in  fostering  a  coordinated  participation  of  excellence Italian institutes/facilities to different European biomedical RIs, thus contributing to health innovation, healthcare optimization, and healthcare cost containment.

    A multidisciplinary study using in vivo tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells

    Get PDF
    A full elucidation of events occurring inside the cancer microenvironment is fundamental for the optimization of more effective therapies. In the present study, the cross-talk between cancer and immune cells was examined by employing mice deficient (KO) in interferon regulatory factor (IRF)-8, a transcription factor essential for induction of competent immune responses. The in vivo results showed that IRF-8 KO mice were highly permissive to B16.F10 melanoma growth and metastasis due to failure of their immune cells to exert proper immunosurveillance. These events were found to be dependent on soluble factors released by cells of the immune system capable of shaping the malignant phenotype of melanoma cells. An on-chip model was then generated to further explore the reciprocal interactions between the B16.F10 and immune cells. B16.F10 and immune cells were co-cultured in a microfluidic device composed of three culturing chambers suitably inter-connected by an array of microchannels; mutual interactions were then followed using time-lapse microscopy. It was observed that WT immune cells migrated through the microchannels towards the B16.F10 cells, establishing tight interactions that in turn limited tumor spread. In contrast, IRF-8 KO immune cells poorly interacted with the melanoma cells, resulting in a more invasive behavior of the B16.F10 cells. These results suggest that IRF-8 expression plays a key role in the cross-talk between melanoma and immune cells, and under-score the value of cell-on-chip approaches as useful in vitro tools to reconstruct complex in vivo microenvironments on a microscale level to explore cell interactions such as those occurring within a cancer immunoenvironment

    MHV-68 producing mIFN␣1 is severely attenuated in vivo and effectively protects mice against challenge with wt MHV-68

    Get PDF
    Corrigendum Corrigendum to "MHV-68 producing mIFN␣1 is severely attenuated in vivo and effectively protects mice against challenge with wt MHV-68" [Vaccine 29 (2011) In this study, we focused on the effects of interferon-␣ (IFN-␣) on both the lytic and latent phase of MHV-68 infection, as exerted by the constitutive release of IFN-␣1 by a clone of MHV-68 genetically modified to produce this cytokine (MHV-68mIFN␣1). Although the MHV-68mIFN␣1 recombinant virus exhibited in vitro replication features indistinguishable from those of the wild type MHV-68, its pathological properties were severely attenuated in vivo in immunocompetent mice and not in mice rendered genetically unresponsive to type I IFN, suggesting that a stronger immune response was primed in the presence of the cytokine. Notably, MHV-68mIFN␣1 attenuation did not result in a reduced level of longterm spleen latency establishment. These results prompted us to evaluate the efficacy of MHV-68mIFN␣1 in a prophylactic vaccination regimen aimed at inhibiting the symptoms of acute virus infection and the establishment of long-term latency after MHV-68 challenge. Our results show that mice vaccinated with MHV-68mIFN␣1, administered as a live-attenuated or partially inactivated (by Psoralen and UV treatment) vaccine, were protected against the challenge with wt MHV-68 from all phases of infection. The ability of MHV-68mIFN␣1 to produce IFN-␣ at the site of the infection, thus efficiently stimulating the immune system in case of virus reactivation from latency, makes this recombinant virus a safer live-attenuated vaccine as compared to the previously reported latency-deficient clones

    Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis

    Get PDF
    Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8−/−) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8−/− mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8−/−, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8−/− mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions

    Interferon-α-Conditioned Human Monocytes Combine a Th1-Orienting Attitude with the Induction of Autologous Th17 Responses: Role of IL-23 and IL-12

    Get PDF
    IFN-α exerts multiple effects leading to immune protection against pathogens and cancer as well to autoimmune reactions by acting on monocytes and dendritic cells. We analyzed the versatility of human monocytes conditioned by IFN-α towards dendritic cell differentiation (IFN-DC) in shaping the autologous T-helper response. Priming of naïve CD4 T cells with autologous IFN-DC in the presence of either SEA or anti-CD3, resulted, in addition to a prominent expansion of CXCR3+ IFN-γ-producing CD4 Th1 cells, in the emergence of two distinct subsets of IL-17-producing CD4 T cells: i) a predominant Th17 population selectively producing IL-17 and expressing CCR6; ii) a minor Th1/Th17 population, producing both IL-17 and IFN-γ. After phagocytosis of apoptotic cells, IFN-DC induced Th17 cell expansion and IL-17 release. Notably, the use of neutralizing antibodies revealed that IL-23 was an essential cytokine in mediating Th17 cell development by IFN-DC. The demonstration of the IFN-DC-induced expansion of both Th1 and Th17 cell populations reveals the intrinsic plasticity of these DC in orienting the immune response and provides a mechanistic link between IFN-α and the onset of autoimmune phenomena, which have been correlated with both IL-17 production and exposure to IFN-α

    Multicentre harmonisation of a six-colour flow cytometry panel for naïve/memory T cell immunomonitoring

    Get PDF
    Background. Personalised medicine in oncology needs standardised immunological assays. Flow cytometry (FCM) methods represent an essential tool for immunomonitoring, and their harmonisation is crucial to obtain comparable data in multicentre clinical trials. The objective of this study was to design a harmonisation workflow able to address the most effective issues contributing to intra- and interoperator variabilities in a multicentre project. Methods. The Italian National Institute of Health (Istituto Superiore di Sanita, ISS) managed a multiparametric flow cytometric panel harmonisation among thirteen operators belonging to five clinical and research centres of Lazio region (Italy). The panel was based on a backbone mixture of dried antibodies (anti-CD3, anti-CD4, anti-CD8, anti-CD45RA, and anti-CCR7) to detect naive/memory T cells, recognised as potential prognostic/predictive immunological biomarkers in cancer immunotherapies. The coordinating centre distributed frozen peripheral blood mononuclear cells (PBMCs) and fresh whole blood (WB) samples from healthy donors, reagents, and Standard Operating Procedures (SOPs) to participants who performed experiments by their own equipment, in order to mimic a real-life scenario. Operators returned raw and locally analysed data to ISS for central analysis and statistical elaboration. Results. Harmonised and reproducible results were obtained by sharing experimental set-up and procedures along with centralising data analysis, leading to a reduction of cross-centre variability for naive/memory subset frequencies particularly in the whole blood setting. Conclusion. Our experimental and analytical working process proved to be suitable for the harmonisation of FCM assays in a multicentre setting, where high-quality data are required to evaluate potential immunological markers, which may contribute to select better therapeutic options
    corecore