6 research outputs found

    Gene expression changes associated with trajectories of psychopathology in a longitudinal cohort of children and adolescents

    Get PDF
    We aimed to identify blood gene expression patterns associated to psychopathological trajectories retrieved from a large community, focusing on the emergence and remission of general psychiatric symptoms. Hundred and three individuals from the Brazilian High-Risk Cohort Study (BHRCS) for mental disorders were classified in four groups according to Child Behavior Checklist (CBCL) total score at the baseline (w0) and after 3 years (w1): low–high (L–H) (N = 27), high–low (H–L) (N = 12), high–high (H–H) (N = 34) and low–low (L–L) groups (N = 30). Blood gene expression profile was measured using Illumina HT-12 Beadchips, and paired analyses comparing w0 and w1 were performed for each group. Results: 98 transcripts were differentially expressed comparing w0 and w1 in the L-H, 33 in the H–L, 177 in the H–H and 273 in the L–L. Of these, 66 transcripts were differentially expressed exclusively in the L–H; and 6 only in the H–L. Cross-Lagged Panel Models analyses revealed that RPRD2 gene expression at w1 might be influenced by the CBCL score at w0. Moreover, COX5B, SEC62, and NDUFA2 were validated with another technique and were also differentially regulated in postmortem brain of subjects with mental disorders, indicating that they might be important not only to specific disorders, but also to general psychopathology and symptoms trajectories. Whereas genes related to metabolic pathways seem to be associated with the emergence of psychiatric symptoms, mitochondrial inner membrane genes might be important over the course of normal development. These results suggest that changes in gene expression can be detected in blood in different psychopathological trajectories

    Polygenic risk score for attention-deficit/hyperactivity disorder and brain functional networks segregation in a community-based sample

    Get PDF
    Neuroimaging studies suggest that brain development mechanisms might explain at least some behavioural and cognitive attention-deficit/hyperactivity disorder (ADHD) symptoms. However, the putative mechanisms by which genetic susceptibility factors influence clinical features via alterations of brain development remain largely unknown. Here, we set out to integrate genomics and connectomics tools by investigating the associations between an ADHD polygenic risk score (ADHD-PRS) and functional segregation of large-scale brain networks. With this aim, ADHD symptoms score, genetic and rs-fMRI (resting-state functional magnetic resonance image) data obtained in a longitudinal community-based cohort of 227 children and adolescents were analysed. A follow-up was conducted approximately 3 years after the baseline, with rs-fMRI scanning and ADHD likelihood assessment in both stages. We hypothesised a negative correlation between probable ADHD and the segregation of networks involved in executive functions, and a positive correlation with the default-mode network (DMN). Our findings suggest that ADHD-PRS is correlated with ADHD at baseline, but not at follow-up. Despite not surviving for multiple comparison correction, we found significant correlations between ADHD-PRS and segregation of cingulo-opercular networks and DMN at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation. These directions of associations corroborate the proposed counter-balanced role of attentional networks and DMN in attentional processes. However, the association between ADHD-PRS and brain networks functional segregation was not found at follow-up. Our results provide evidence for specific influences of genetic factors on development of attentional networks and DMN. We found significant correlations between polygenic risk score for ADHD (ADHD-PRS) and segregation of cingulo-opercular networks and default-mode network (DMN) at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation

    Obsessive-compulsive symptoms, polygenic risk score, and thalamic development in children from the Brazilian High-Risk Cohort for Mental Conditions (BHRCS)

    Get PDF
    Background: Thalamic volume measures have been linked to obsessive-compulsive disorder (OCD) in children and adolescents. However, it is unclear if alterations in thalamic volumes occur before or after symptom onset and if there is a relation to the presence of sub-clinical obsessive-compulsive symptoms (OCS). Here, we explore the relationship between OCS and the rate of thalamic volume change in a cohort of children and youth at high risk to develop a mental disorder. A secondary aim was to determine if there is a relationship between OCS and the individual’s OCD polygenic risk score (OCD-PRS) and between the rate of thalamic volume change and the OCD-PRS. Methods: The sample included 378 children enrolled in the longitudinal Brazilian High-Risk Cohort for Mental Conditions. Participants were assessed for OCS and the symmetrized percent change (SPC) of thalamic volume across two time-points separated by 3 years, along with the OCD-PRS. Zero-altered negative binomial models were used to analyze the relationship between OCS and thalamic SPC. Multiple linear regressions were used to examine the relationship between thalamic SPC and OCD-PRS. Results: A significant relationship between OCS and the right thalamus SPC (p = 0.042) was found. There was no significant relationship between changes in thalamic volume SPC and OCD-PRS. Conclusions: The findings suggest that changes in the right thalamic volume over the course of 3 years in children may be associated to OCS. Future studies are needed to confirm these results and further characterize the specific nature of OCS symptoms associated with thalamic volumes

    Detecting multiple differentially methylated CpG sites and regions related to dimensional psychopathology in youths

    Get PDF
    Background: Psychiatric symptomatology during late childhood and early adolescence tends to persist later in life. In the present longitudinal study, we aimed to identify changes in genome-wide DNA methylation patterns that were associated with the emergence of psychopathology in youths from the Brazilian High-Risk Cohort (HRC) for psychiatric disorders. Moreover, for the differentially methylated genes, we verified whether differences in DNA methylation corresponded to differences in mRNA transcript levels by analyzing the gene expression levels in the blood and by correlating the variation of DNA methylation values with the variation of mRNA levels of the same individuals. Finally, we examined whether the variations in DNA methylation and mRNA levels were correlated with psychopathology measurements over time. Methods: We selected 24 youths from the HRC who presented with an increase in dimensional psychopathology at a 3-year follow-up as measured by the Child Behavior Checklist (CBCL). The DNA methylation and gene expression data were compared in peripheral blood samples (n = 48) obtained from the 24 youths before and after developing psychopathology. We implemented a methodological framework to reduce the effect of chronological age on DNA methylation using an independent population of 140 youths and the effect of puberty using data from the literature. Results: We identified 663 differentially methylated positions (DMPs) and 90 differentially methylated regions (DMRs) associated with the emergence of psychopathology. We observed that 15 DMPs were mapped to genes that were differentially expressed in the blood; among these, we found a correlation between the DNA methylation and mRNA levels of RB1CC1 and a correlation between the CBCL and mRNA levels of KMT2E. Of the DMRs, three genes were differentially expressed: ASCL2, which is involved in neurogenesis; HLA-E, which is mapped to the MHC loci; and RPS6KB1, the gene expression of which was correlated with an increase in the CBCL between the time points. Conclusions: We observed that changes in DNA methylation and, consequently, in gene expression in the peripheral blood occurred concurrently with the emergence of dimensional psychopathology in youths. Therefore, epigenomic modulations might be involved in the regulation of an individual’s development of psychopathology

    An integrative approach to investigate the respective roles of single-nucleotide variants and copy-number variants in attention-deficit/hyperactivity disorder

    Get PDF
    Many studies have attempted to investigate the genetic susceptibility of Attention-Deficit/ Hyperactivity Disorder (ADHD), but without much success. The present study aimed to analyze both single-nucleotide and copy-number variants contributing to the genetic architecture of ADHD. We generated exome data from 30 Brazilian trios with sporadic ADHD. We also analyzed a Brazilian sample of 503 children/adolescent controls from a High Risk Cohort Study for the Development of Childhood Psychiatric Disorders, and also previously published results of five CNV studies and one GWAS metaanalysis of ADHD involving children/adolescents. The results from the Brazilian trios showed that cases with de novo SNVs tend not to have de novo CNVs and vice-versa. Although the sample size is small, we could also see that various comorbidities are more frequent in cases with only inherited variants. Moreover, using only genes expressed in brain, we constructed two “in silico” protein-protein interaction networks, one with genes from any analysis, and other with genes with hits in two analyses. Topological and functional analyses of genes in this network uncovered genes related to synapse, cell adhesion, glutamatergic and serotoninergic pathways, both confirming findings of previous studies and capturing new genes and genetic variants in these pathways

    An integrative approach to investigate the respective roles of single-nucleotide variants and copy-number variants in attention-deficit/hyperactivity disorder

    Get PDF
    Many studies have attempted to investigate the genetic susceptibility of Attention-Deficit/ Hyperactivity Disorder (ADHD), but without much success. The present study aimed to analyze both single-nucleotide and copy-number variants contributing to the genetic architecture of ADHD. We generated exome data from 30 Brazilian trios with sporadic ADHD. We also analyzed a Brazilian sample of 503 children/adolescent controls from a High Risk Cohort Study for the Development of Childhood Psychiatric Disorders, and also previously published results of five CNV studies and one GWAS metaanalysis of ADHD involving children/adolescents. The results from the Brazilian trios showed that cases with de novo SNVs tend not to have de novo CNVs and vice-versa. Although the sample size is small, we could also see that various comorbidities are more frequent in cases with only inherited variants. Moreover, using only genes expressed in brain, we constructed two “in silico” protein-protein interaction networks, one with genes from any analysis, and other with genes with hits in two analyses. Topological and functional analyses of genes in this network uncovered genes related to synapse, cell adhesion, glutamatergic and serotoninergic pathways, both confirming findings of previous studies and capturing new genes and genetic variants in these pathways
    corecore