288 research outputs found
Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow
We experimentally assess the capabilities of an active, open-loop technique
for drag reduction in turbulent wall flows recently introduced by Quadrio et
al. [J. Fluid Mech., v.627, 161, (2009)]. The technique consists in generating
streamwise-modulated waves of spanwise velocity at the wall, that travel in the
streamwise direction.
A proof-of-principle experiment has been devised to measure the reduction of
turbulent friction in a pipe flow, in which the wall is subdivided into thin
slabs that rotate independently in the azimuthal direction. Different speeds of
nearby slabs provide, although in a discrete setting, the desired streamwise
variation of transverse velocity.
Our experiment confirms the available DNS results, and in particular
demonstrates the possibility of achieving large reductions of friction in the
turbulent regime. Reductions up to 33% are obtained for slowly
forward-traveling waves; backward-traveling waves invariably yield drag
reduction, whereas a substantial drop of drag reduction occurs for waves
traveling forward with a phase speed comparable to the convection speed of
near-wall turbulent structures.
A Fourier analysis is employed to show that the first harmonics introduced by
the discrete spatial waveform that approximates the sinusoidal wave are
responsible for significant effects that are indeed observed in the
experimental measurements. Practical issues related to the physical
implementation of this control scheme and its energetic efficiency are briefly
discussed.Comment: Article accepted by Phys. Fluids. After it is published, it will be
found at http://pof.aip.or
The research of the maximum wind speed in Tomsk and calculations of dynamic load on antenna systems
The work is concerned with calculations and analysis of the maximum wind speed in Tomsk city. The data for analysis were taken from the TOR-station located in the north-eastern part of the city. The TOR-station sensors to measure a speed and a direction of wind are installed on the 10-meter meteorological mast. Wind is measured by M-63, which uses the standard approach and the program with one-minute averaging for wind gusts recording as well. According to the measured results in the research performed, the estimation of the dynamic and wind load on different types of antenna systems was performed. The work shows the calculations of wind load on ten types of antenna systems, distinguished by their different constructions and antenna areas. For implementation of calculations, we used methods developed in the Central Research and Development Institute of Building Constructions named after V.A. Kucherenko. The research results could be used for design engineering of the static antenna systems and mobile tracking systems for the distant objects
The Hydrodynamics of Astrophysical jets: Scaled Experiments and Numerical Simulations
Context. In this paper we study the propagation of hypersonic hydrodynamic jets (Mach number >5) in a laboratory vessel and make comparisons with numerical simulations of axially symmetric flows with the same initial and boundary conditions. The astrophysical context is that of the jets originating around young stellar objects (YSOs). Aims. In order to gain a deeper insight into the phenomenology of YSO jets, we performed a set of experiments and numerical simulations of hypersonic jets in the range of Mach numbers from 10 to 20 and for jet-to-ambient density ratios from 0.85 to 5.4, using different gas species and observing jet lengths of the order of 150 initial radii or more. Exploiting the scalability of the hydrodynamic equations, we intend to reproduce the YSO jet behaviour with respect to jet velocity and elapsed times. In addition, we can make comparisons between the simulated, the experimental, and the observed morphologies. Methods. In the experiments the gas pressure and temperature are increased by a fast, quasi-isentropic compression by means of a piston system operating on a time scale of tens of milliseconds, while the gas density is visualized and measured by means of an electron beam system. We used the PLUTO software for the numerical solution of mixed hyperbolic/parabolic conservation laws targeting high Mach number flows in astrophysical fluid dynamics. We considered axisymmetric initial conditions and carried out numerical simulations in cylindrical geometry. The code has a modular flexible structure whereby different numerical algorithms can be separately combined to solve systems of conservation laws using the finite volume or finite difference approach based on Godunov-type schemes. Results. The agreement between experiments and numerical simulations is fairly good in most of the comparisons. The resulting scaled flow velocities and elapsed times are close to the ones shown by observations. The morphologies of the density distributions agree with the observed ones as well. Conclusions. The laboratory and the simulated hypersonic jets are all pressure matched, i.e. their axial regions are almost isentropic at the nozzle exit. They maintain their collimation for long distances in terms of the initial jet radii, without including magnetic confinement effects. This yields a qualitatively good agreement with the observed YSO jet morphologies. It remains to be seen what happens when non-axially symmetric perturbations of the flow are imposed at the nozzle, both in the experiment and in the simulation
Cool spots on the surface of the active giant PZ Mon
Based on the multiband (BVRIJHKL) photometric observations of the active red
giant PZ Mon performed for the first time in the winter season of 2017-2018, we
have determined the main characteristics of the spotted stellar surface in a
parametric three-spot model. The unspotted surface temperature is Teff=4730 K,
the temperature of the cool spots is Tspot=3500 K, their relative area is about
41%, and the temperature of the warm spots is Twarm=4500 K with a maximum
relative area up to 20%. The distribution of spots over the stellar surface has
been modeled. The warm spots have been found to be distributed at various
longitudes in the hemisphere on the side of the secondary component and are
most likely a result of its influence.Comment: 5 pages, 7 figure
Highly underexpanded jets in the presence of a density jump between an ambient gas and a jet
An experimental research concerning highly underexpanded jets made of different gases from the surrounding ambient is here described. By selecting different species of gases, it was possible to vary the jet-to-ambient density ratio in the 0.04–12 range and observe its effect on the jet morphology. By adjusting the stagnation and ambient pressures, it has been possible to select the Mach number of the jets, independently from the density ratio. Each jet is therefore characterized by its maximum Mach number, ranging from 10 to 50. The Reynolds number range of the nozzle is 103–5×104. The spatial evolution of the jets was observed over a much larger scale than the nozzle diameter. The gas densities were evaluated from the light emission induced by an electron beam and the gas concentrations were obtained by analyzing the color of the emitted light. The results have shown that the morphology of the jets depends to a greater extent on the density ratio. Jets that are lighter than the ambient exhibit a more intense jet-ambient mixing than jets that are heavier than the ambient, while the effects of changing the jet Mach number do not seem to be too large in the explored range. These results can be expressed by means of two simple scaling laws relevant to the near field (pre-Mach-disk) and the mid-long term field (post-Mach-disk), respectively.
PRE Kaleidoscope Images: August 2010
http://pre.aps.org/kaleidoscope/August2010/pr
- …