14 research outputs found

    Correction to: Transplantation of Human Chorion-Derived Cholinergic Progenitor Cells: a Novel Treatment for Neurological Disorders

    Get PDF
    The original version of this article unfortunately contained mistake in the affiliation. Affiliation 1 should be read as �Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran�. The original article has been corrected. © 2018 Springer Science+Business Media, LLC, part of Springer Natur

    Correction to: Transplantation of Human Chorion-Derived Cholinergic Progenitor Cells: a Novel Treatment for Neurological Disorders

    Get PDF
    The original version of this article unfortunately contained mistake in the affiliation. Affiliation 1 should be read as �Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran�. The original article has been corrected. © 2018 Springer Science+Business Media, LLC, part of Springer Natur

    Correction to: Transplantation of Human Chorion-Derived Cholinergic Progenitor Cells: a Novel Treatment for Neurological Disorders (Molecular Neurobiology, (2019), 56, 1, (307-318), 10.1007/s12035-018-0968-1)

    Get PDF
    The original version of this article unfortunately contained mistake in the affiliation. Affiliation 1 should be read as �Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran�. The original article has been corrected. © 2018, Springer Science+Business Media, LLC, part of Springer Nature

    Population Enumeration and Household Utilization Survey Methods in the Enterics for Global Health (EFGH): Shigella Surveillance Study

    Get PDF
    Background: Accurate estimation of diarrhea incidence from facility-based surveillance requires estimating the population at risk and accounting for case patients who do not seek care. The Enterics for Global Health (EFGH) Shigella surveillance study will characterize population denominators and healthcare-seeking behavior proportions to calculate incidence rates of Shigella diarrhea in children aged 6–35 months across 7 sites in Africa, Asia, and Latin America. Methods: The Enterics for Global Health (EFGH) Shigella surveillance study will use a hybrid surveillance design, supplementing facility-based surveillance with population-based surveys to estimate population size and the proportion of children with diarrhea brought for care at EFGH health facilities. Continuous data collection over a 24 month period captures seasonality and ensures representative sampling of the population at risk during the period of facility-based enrollments. Study catchment areas are broken into randomized clusters, each sized to be feasibly enumerated by individual field teams. Conclusions: The methods presented herein aim to minimize the challenges associated with hybrid surveillance, such as poor parity between survey area coverage and facility coverage, population fluctuations, seasonal variability, and adjustments to care-seeking behavior

    2-Deoxyglucose protects hippocampal neurons against kainate-induced temporal lobe epilepsy by modulating monocyte-derived macrophages (mo-MΦ) and progranulin production in the hippocampus

    No full text
    Inflammation is an important factor in the pathology of epilepsy with the hallmarks of resident microglia activation and infiltration of circulating monocytes in the damaged area. In the case of recovery and tissue repair, some monocytes change to macrophages (mo-MΦ) to enhance tissue repair. 2-deoxyglucose (2DG) is an analog of glucose capable of protecting the brain, and progranulin is a neurotrophic factor produced mainly by microglia and has an inflammation modulator effect. This study attempted to evaluate if one of the neuroprotective mechanisms of 2-DG is comprised of increasing monocyte-derived macrophages (mo-MΦ) and progranulin production. Status epilepticus (SE) was induced by i.c.v. injection of kainic acid (KA).2DG (125/mg/kg/day) was administered intraperitoneally. Four days later, animals were sacrificed. Their brain sections were then stained with Cresyl violet and Fluoro-Jade B to count the number of necrotic and degenerating neurons in CA3 and Hilus of dentate gyrus of the hippocampus. Lastly, immunohistochemistry was used to detect CD11b + monocyte, macrophage cells, and Progranulin level was evaluated by Western blotting. The histological analysis showed that 2DG can reduce the number of necrotic and degenerating neurons in CA3 and Hilar areas. Following KA administration, a great number of cD11b+ cells with monocyte morphology were observed in the hippocampus. 2DG not only reduced cD11b+ monocyte cells but was able to convert them to cells with the morphology of macrophages (mo-MΦ). 2DG also caused a significant increase in progranulin level in the hippocampus. Because macrophages and microglia are the most important sources of progranulin, it appears that 2DG caused the derivation of monocytes to macrophages and these cells produced progranulin with a subsequent anti-inflammation effect. In summary, it was concluded that 2DG is neuroprotective and probably one of its neuroprotective mechanisms is by modulating monocyte-derived macrophages by progranulin production. © 201

    Transplantation of Human Chorion-Derived Cholinergic Progenitor Cells: a Novel Treatment for Neurological Disorders

    Get PDF
    NoA neurological disorder is any disorder or abnormality in the nervous system. Among different neurological disorders, Alzheimer’s disease (AD) is recognized as the sixth leading cause of death globally. Considerable research has been conducted to find pioneer treatments for this devastating disorder among which cell therapy has attracted remarkable attentions over the last decade. Up to now, targeted differentiation into specific desirable cell types has remained a major obstacle to clinical application of cell therapy. Also, potential risks including uncontrolled growth of stem cells could be disastrous. In our novel protocol, we used basal forebrain cholinergic progenitor cells (BFCN) derived from human chorion-derived mesenchymal stem cells (hC-MSCs) which made it possible to obtain high-quality population of cholinergic neurons and in vivo in much shorter time period than previous established methods. Remarkably, the transplanted progenitors fully differentiated to cholinergic neurons which in turn integrated in higher cortical networks of host brains, resulting in significant improvement in cognitive assessments. This method may have profound implications in cell therapies for any other neurodegenerative disorders.This work was carried outwithin the framework of a collaborative project (Project Grant No. 94-02-30-25922) by the School of Medicine, Iran University of Medical Sciences, (Project Grant No. REP209) council for stem cell sciences and technologies (Presidency of the Islamic Republic of Iran, vice-presidency for science and technology), and Iran National Science Foundation (INSF)

    Transplantation of Human Chorion-Derived Cholinergic Progenitor Cells: a Novel Treatment for Neurological Disorders

    No full text
    A neurological disorder is any disorder or abnormality in the nervous system. Among different neurological disorders, Alzheimer�s disease (AD) is recognized as the sixth leading cause of death globally. Considerable research has been conducted to find pioneer treatments for this devastating disorder among which cell therapy has attracted remarkable attentions over the last decade. Up to now, targeted differentiation into specific desirable cell types has remained a major obstacle to clinical application of cell therapy. Also, potential risks including uncontrolled growth of stem cells could be disastrous. In our novel protocol, we used basal forebrain cholinergic progenitor cells (BFCN) derived from human chorion-derived mesenchymal stem cells (hC-MSCs) which made it possible to obtain high-quality population of cholinergic neurons and in vivo in much shorter time period than previous established methods. Remarkably, the transplanted progenitors fully differentiated to cholinergic neurons which in turn integrated in higher cortical networks of host brains, resulting in significant improvement in cognitive assessments. This method may have profound implications in cell therapies for any other neurodegenerative disorders. Figure not available: see fulltext. © 2018, Springer Science+Business Media, LLC, part of Springer Nature
    corecore