67 research outputs found

    H2A.X Phosphorylation in Oxidative Stress and Risk Assessment in Plasma Medicine

    Get PDF
    At serine139-phosphorylated gamma histone H2A.X (γH2A.X) has been established over the decades as sensitive evidence of radiation-induced DNA damage, especially DNA double-strand breaks (DSBs) in radiation biology. Therefore, γH2A.X has been considered a suitable marker for biomedical applications and a general indicator of direct DNA damage with other therapeutic agents, such as cold physical plasma. Medical plasma technology generates a partially ionized gas releasing a plethora of reactive oxygen and nitrogen species (ROS) simultaneously that have been used for therapeutic purposes such as wound healing and cancer treatment. The quantification of γH2A.X as a surrogate parameter of direct DNA damage has often been used to assess genotoxicity in plasma-treated cells, whereas no sustainable mutagenic potential of the medical plasma treatment could be identified despite H2A.X phosphorylation. However, phosphorylated H2A.X occurs during apoptosis, which is associated with exposure to cold plasma and ROS. This review summarizes the current understanding of γH2A.X induction and function in oxidative stress in general and plasma medicine in particular. Due to the progress towards understanding the mechanisms of H2A.X phosphorylation in the absence of DSB and ROS, observations of γH2A.X in medical fields should be carefully interpreted

    Plasma medicine: The great prospects when physics meets medicine

    Get PDF
    The research has demonstrated the antimicrobial properties of plasma urging the incorporation of cold atmospheric plasma (CAP) decontamination in current clinical therapies with the aim to improve the benefits on the patients and on society.Postprint (published version

    Efficacy of Different Carrier Gases for Barrier Discharge Plasma Generation Compared to Chlorhexidine on the Survival of Pseudomonas aeruginosa Embedded in Biofilm in vitro

    Get PDF
    Because of its antimicrobial properties, nonthermal plasma could serve as an alternative to chemical antisepsis in wound treatment. Therefore, this study investigated the inactivation of biofilm-embedded Pseudomonas aeruginosa SG81 by a surface barrier-discharged (SBD) plasma for 30, 60, 150 and 300 s. In order to optimize the efficacy of the plasma, different carrier gases (argon, argon admixed with 1% oxygen, and argon with increased humidity up to approx. 80%) were tested and compared against 0.1% chlorhexidine digluconate (CHG) exposure for 600 s. The antimicrobial efficacy was determined by calculating the difference between the numbers of colony-forming units (CFU) of treated and untreated biofilms. Living bacteria were distinguished from dead by fluorescent staining and confocal laser scanning microscopy. Both SBD plasmas and CHG showed significant antimicrobial effects compared to the untreated control. However, plasma treatment led to a higher antimicrobial reduction (argon plasma 4.9 log10 CFU/cm2, argon with admixed oxygen 3 log10 CFU/cm2, and with increased gas humidity 2.7 log10 CFU/cm2 after 300 s) compared to CHG. In conclusion, SBD plasma is suitable as an alternative to CHG for inactivation of Pseudomonas aeruginosa embedded in biofilm. Further development of SBD plasma sources and research on the role of carrier gases and humidity may allow their clinical application for wound management in the future

    Inactivation of Cerebral Cavernous Malformation Genes Results in Accumulation of von Willebrand Factor and Redistribution of Weibel-Palade Bodies in Endothelial Cells

    Get PDF
    Cerebral cavernous malformations are slow-flow thrombi-containing vessels induced by two-step inactivation of the CCM1, CCM2 or CCM3 gene within endothelial cells. They predispose to intracerebral bleedings and focal neurological deficits. Our understanding of the cellular and molecular mechanisms that trigger endothelial dysfunction in cavernous malformations is still incomplete. To model both, hereditary and sporadic CCM disease, blood outgrowth endothelial cells (BOECs) with a heterozygous CCM1 germline mutation and immortalized wild-type human umbilical vein endothelial cells were subjected to CRISPR/Cas9-mediated CCM1 gene disruption. CCM1−/− BOECs demonstrated alterations in cell morphology, actin cytoskeleton dynamics, tube formation, and expression of the transcription factors KLF2 and KLF4. Furthermore, high VWF immunoreactivity was observed in CCM1−/− BOECs, in immortalized umbilical vein endothelial cells upon CRISPR/Cas9-induced inactivation of either CCM1, CCM2 or CCM3 as well as in CCM tissue samples of familial cases. Observer-independent high-content imaging revealed a striking reduction of perinuclear Weibel-Palade bodies in unstimulated CCM1−/− BOECs which was observed in CCM1+/− BOECs only after stimulation with PMA or histamine. Our results demonstrate that CRISPR/Cas9 genome editing is a powerful tool to model different aspects of CCM disease in vitro and that CCM1 inactivation induces high-level expression of VWF and redistribution of Weibel-Palade bodies within endothelial cells

    In Vitro Examinations of Cell Death Induction and the Immune Phenotype of Cancer Cells Following Radiative-Based Hyperthermia with 915 MHz in Combination with Radiotherapy

    Get PDF
    Multimodal tumor treatment settings consisting of radiotherapy and immunomodulating agents such as immune checkpoint inhibitors are more and more commonly applied in clinics. In this context, the immune phenotype of tumor cells has a major influence on the anti-tumor immune response as well as the composition of the tumor microenvironment. A promising approach to further boost anti-tumor immune responses is to add hyperthermia (HT), i.e., heating the tumor tissue between 39 °C to 45 °C for 60 min. One key technique is the use of radiative hyperthermia systems. However, knowledge is limited as to how the frequency of the used radiative systems affects the immune phenotype of the treated tumor cells. By using our self-designed in vitro hyperthermia system, we compared cell death induction and expression of immune checkpoint molecules (ICM) on the tumor cell surface of murine B16 melanoma and human MDA-MB-231 and MCF-7 breast cancer cells following HT treatment with clinically relevant microwaves at 915 MHz or 2.45 GHz alone, radiotherapy (RT; 2 × 5 Gy or 5 × 2 Gy) alone or in combination (RHT). At 44 °C, HT alone was the dominant cell death inductor with inactivation rates of around 70% for B16, 45% for MDA-MB-231 and 35% for MCF-7 at 915 MHz and 80%, 60% and 50% at 2.45 GHz, respectively. Additional RT resulted in 5-15% higher levels of dead cells. The expression of ICM on tumor cells showed time-, treatment-, cell line- and frequency-dependent effects and was highest for RHT. Computer simulations of an exemplary spherical cell revealed frequency-dependent local energy absorption. The frequency of hyperthermia systems is a newly identified parameter that could also affect the immune phenotype of tumor cells and consequently the immunogenicity of tumors

    Immunophenotyping of Circulating and Intratumoral Myeloid and T Cells in Glioblastoma Patients

    Get PDF
    Glioblastoma is the most common and lethal primary brain malignancy that almost inevitably recurs as therapy-refractory cancer. While the success of immune checkpoint blockade (ICB) revealed the immense potential of immune-targeted therapies in several types of cancers outside the central nervous system, it failed to show objective responses in glioblastoma patients as of now. The ability of glioblastoma cells to drive multiple modes of T cell dysfunction while exhibiting low-quality neoepitopes, low-mutational load, and poor antigen priming limits anti-tumor immunity and efficacy of antigen-unspecific immunotherapies such as ICB. An in-depth understanding of the GBM immune landscape is essential to delineate and reprogram such immunosuppressive circuits during disease progression. In this view, the present study aimed to characterize the peripheral and intratumoral immune compartments of 35 glioblastoma patients compared to age- and sex-matched healthy control probands, particularly focusing on exhaustion signatures on myeloid and T cell subsets. Compared to healthy control participants, different immune signatures were already found in the peripheral circulation, partially related to the steroid medication the patients received. Intratumoral CD4+ and CD8+ TEM cells (CD62Llow/CD45ROhigh) revealed a high expression of PD1, which was also increased on intratumoral, pro-tumorigenic macrophages/microglia. Histopathological analysis further identified high PSGL-1 expression levels of the latter, which has recently been linked to increased metastasis in melanoma and colon cancer via P-selectin-mediated platelet activation. Overall, the present study comprises immunophenotyping of a patient cohort to give implications for eligible immunotherapeutic targets in neurooncology in the future
    corecore