205 research outputs found

    A simple theorem to generate exact black hole solutions

    Full text link
    Under certain conditions imposed on the energy-momentum tensor, a theorem that characterizes a two-parameter family of static and spherically symmetric solutions to Einstein's field equations (black holes), is proved. A discussion on the asymptotics, regularity, and the energy conditions is provided. Examples that include the best known exact solutions within these symmetries are considered. A trivial extension of the theorem includes the cosmological constant {\it ab-initio}, providing then a three-parameter family of solutions.Comment: 14 pages; RevTex; no figures; typos corrected; references adde

    Properties of global monopoles with an event horizon

    Get PDF
    We investigate the properties of global monopoles with an event horizon. We find that there is an unstable circular orbit even if a particle does not have an angular momentum when the core mass is negative. We also obtain the asymptotic form of solutions when the event horizon is much larger than the core radius of the monopole, and discuss if they could be a model of galactic halos.Comment: 5 pages, 7 figure

    The Collapse of Large Extra Dimensions

    Get PDF
    In models of spacetime that are the product of a four-dimensional spacetime with an ``extra'' dimension, there is the possibility that the extra dimension will collapse to zero size, forming a singularity. We ask whether this collapse is likely to destroy the spacetime. We argue, by an appeal to the four-dimensional cosmic censorship conjecture, that--at least in the case when the extra dimension is homogeneous--such a collapse will lead to a singularity hidden within a black string. We also construct explicit initial data for a spacetime in which such a collapse is guaranteed to occur and show how the formation of a naked singularity is likely avoided.Comment: Uses revtex

    Gravity wave analogs of black holes

    Full text link
    It is demonstrated that gravity waves of a flowing fluid in a shallow basin can be used to simulate phenomena around black holes in the laboratory. Since the speed of the gravity waves as well as their high-wavenumber dispersion (subluminal vs. superluminal) can be adjusted easily by varying the height of the fluid (and its surface tension) this scenario has certain advantages over the sonic and dielectric black hole analogs, for example, although its use in testing quantum effects is dubious. It can be used to investigate the various classical instabilities associated with black (and white) holes experimentally, including positive and negative norm mode mixing at horizons. PACS: 04.70.-s, 47.90.+a, 92.60.Dj, 04.80.-y.Comment: 14 pages RevTeX, 5 figures, section VI modifie

    Building blocks of a black hole

    Get PDF
    What is the nature of the energy spectrum of a black hole ? The algebraic approach to black hole quantization requires the horizon area eigenvalues to be equally spaced. As stressed long ago by by Mukhanov, such eigenvalues must be exponentially degenerate with respect to the area quantum number if one is to understand black hole entropy as reflecting degeneracy of the observable states. Here we construct the black hole states by means of a pair of "creation operators" subject to a particular simple algebra, a slight generalization of that for the harmonic oscillator. We then prove rigorously that the n-th area eigenvalue is exactly 2 raised to the n-fold degenerate. Thus black hole entropy qua logarithm of the number of states for fixed horizon area comes out proportional to that area.Comment: PhysRevTeX, 14 page

    Quantum Mechanical Carrier of the Imprints of Gravitation

    Get PDF
    We exhibit a purely quantum mechanical carrier of the imprints of gravitation by identifying for a relativistic system a property which (i) is independent of its mass and (ii) expresses the Poincare invariance of spacetime in the absence of gravitation. This carrier consists of the phase and amplitude correlations of waves in oppositely accelerating frames. These correlations are expressed as a Klein-Gordon-equation-determined vector field whose components are the ``Planckian power'' and the ``r.m.s. thermal fluctuation'' spectra. The imprints themselves are deviations away from this vector field.Comment: 8 pages, RevTex. Html version of this and related papers on accelerated frames available at http://www.math.ohio-state.edu/~gerlac

    The bound on viscosity and the generalized second law of thermodynamics

    Full text link
    We describe a new paradox for ideal fluids. It arises in the accretion of an \textit{ideal} fluid onto a black hole, where, under suitable boundary conditions, the flow can violate the generalized second law of thermodynamics. The paradox indicates that there is in fact a lower bound to the correlation length of any \textit{real} fluid, the value of which is determined by the thermodynamic properties of that fluid. We observe that the universal bound on entropy, itself suggested by the generalized second law, puts a lower bound on the correlation length of any fluid in terms of its specific entropy. With the help of a new, efficient estimate for the viscosity of liquids, we argue that this also means that viscosity is bounded from below in a way reminiscent of the conjectured Kovtun-Son-Starinets lower bound on the ratio of viscosity to entropy density. We conclude that much light may be shed on the Kovtun-Son-Starinets bound by suitable arguments based on the generalized second law.Comment: 11 pages, 1 figure, published versio

    Coulomb field of an accelerated charge: physical and mathematical aspects

    Get PDF
    The Maxwell field equations relative to a uniformly accelerated frame, and the variational principle from which they are obtained, are formulated in terms of the technique of geometrical gauge invariant potentials. They refer to the transverse magnetic (TM) and the transeverse electric (TE) modes. This gauge invariant "2+2" decomposition is used to see how the Coulomb field of a charge, static in an accelerated frame, has properties that suggest features of electromagnetism which are different from those in an inertial frame. In particular, (1) an illustrative calculation shows that the Larmor radiation reaction equals the electrostatic attraction between the accelerated charge and the charge induced on the surface whose history is the event horizon, and (2) a spectral decomposition of the Coulomb potential in the accelerated frame suggests the possibility that the distortive effects of this charge on the Rindler vacuum are akin to those of a charge on a crystal lattice.Comment: 27 pages, PlainTex. Related papers available at http://www.math.ohio-state.edu/~gerlac

    Focusing and the Holographic Hypothesis

    Get PDF
    The ``screen mapping" introduced by Susskind to implement 't Hooft's holographic hypothesis is studied. For a single screen time, there are an infinite number of images of a black hole event horizon, almost all of which have smaller area on the screen than the horizon area. This is consistent with the focusing equation because of the existence of focal points. However, the {\it boundary} of the past (or future) of the screen obeys the area theorem, and so always gives an expanding map to the screen, as required by the holographic hypothesis. These considerations are illustrated with several axisymmetric static black hole spacetimes.Comment: 8 pages, plain latex, 5 figures included using psfi

    Corrections to the Cardy-Verlinde formula from the generalized uncertainty principle

    Full text link
    In this letter, we compute the corrections to the Cardy-Verlinde formula of dd-dimensional Schwarzschild black hole. These corrections stem from the generalized uncertainty principle. Then we show, one can taking into account the generalized uncertainty principle corrections of the Cardy-Verlinde entropy formula by just redefining the Virasoro operator L0L_0 and the central charge cc.Comment: 8 pages, no figure
    corecore