18 research outputs found

    Primary care randomized clinical trial: manual therapy effectiveness in comparison with TENS in patients with neck pain

    Get PDF
    This study investigated effectiveness of manual therapy (MT) with transcutaneous electrical nerve stimulation (TENS) to reduce pain intensity in patients with mechanical neck disorder (MND). A randomized multi-centered controlled clinical trial was performed in 12 Primary Care Physiotherapy Units in Madrid Region. Ninety patients were included with diagnoses of subacute or chronic MND without neurological damage, 47 patients received MT and 43 TENS. The primary outcome was pain intensity measured in millimeters using the Visual Analogue Scale (VAS). Also disability, quality of life, adverse effects and sociodemographic and prognosis variables were measured. Three evaluations were performed (before, when the procedure ?nished and six months after). Seventy-one patients (79%) completed the follow-up measurement at six months. In more than half of the treated patients the procedure had a clinically relevant ?short term? result after having ended the intervention, when either MT or TENS was used. The success rate decreased to one-third of the patients 6 months after the intervention. No differences can be found in the reduction of pain, in the decrease of disability nor in the quality of life between both therapies. Both analyzed physiotherapy techniques produce a short-term pain reduction that is clinically relevant.Ministerio de SanidadInstituto de Salud Carlos II

    First Human Model of In Vitro Candida albicans Persistence within Granuloma for the Reliable Study of Host-Fungi Interactions

    Get PDF
    BACKGROUND: The balance between human innate immune system and Candida albicans virulence signaling mechanisms ultimately dictates the outcome of fungal invasiveness and its pathology. To better understand the pathophysiology and to identify fungal virulence-associated factors in the context of persistence in humans, complex models are indispensable. Although fungal virulence factors have been extensively studied in vitro and in vivo using different immune cell subsets and cell lines, it is unclear how C. albicans survives inside complex tissue granulomas. METHODOLOGY/PRINCIPAL FINDING: We developed an original model of in vitro human granuloma, reproducing the natural granulomatous response to C. albicans. Persistent granulomas were obtained when the ratio of phagocytes to fungi was high. This in vitro fungal granuloma mimics natural granulomas, with infected macrophages surrounded by helper and cytotoxic T lymphocytes. A small proportion of granulomas exhibited C. albicans hyphae. Histological and time-lapse analysis showed that C. albicans blastoconidia were located within the granulomas before hyphae formation. Using staining techniques, fungal load calculations, as well as confocal and scanning electron microscopy, we describe the kinetics of fungal granuloma formation. We provide the first direct evidence that C. albicans are not eliminated by immunocompetent cells inside in vitro human granulomas. In fact, after an initial candicidal period, the remaining yeast proliferate and persist under very complex immune responses. CONCLUSIONS/SIGNIFICANCE: Using an original in vitro model of human fungal granuloma, we herein present the evidence that C. albicans persist and grow into immunocompetent granulomatous structures. These results will guide us towards a better understanding of fungal invasiveness and, henceforth, will also help in the development of better strategies for its control in human physiological conditions

    Characterization of new otic enhancers of the pou3f4 gene reveal distinct signaling pathway regulation and spatio-temporal patterns

    Get PDF
    POU3F4 is a member of the POU-homedomain transcription factor family with a prominent role in inner ear development. Mutations in the human POU3F4 coding unit leads to X-linked deafness type 3 (DFN3), characterized by conductive hearing loss and progressive sensorineural deafness. Microdeletions found 1 Mb 5ā€² upstream of the coding region also displayed the same phenotype, suggesting that cis-regulatory elements might be present in that region. Indeed, we and others have recently identified several enhancers at the 1 Mb 5ā€² upstream interval of the pou3f4 locus. Here we characterize the spatio-temporal patterns of these regulatory elements in zebrafish transgenic lines. We show that the most distal enhancer (HCNR 81675) is activated earlier and drives GFP reporter expression initially to a broad ear domain to progressively restrict to the sensory patches. The proximal enhancer (HCNR 82478) is switched later during development and promotes expression, among in other tissues, in sensory patches from its onset. The third enhancer (HCNR 81728) is also active at later stages in the otic mesenchyme and in the otic epithelium. We also characterize the signaling pathways regulating these enhancers. While HCNR 81675 is regulated by very early signals of retinoic acid, HCNR 82478 is regulated by Fgf activity at a later stage and the HCNR 81728 enhancer is under the control of Hh signaling. Finally, we show that Sox2 and Pax2 transcription factors are bound to HCNR 81675 genomic region during otic development and specific mutations to these transcription factor binding sites abrogates HCNR 81675 enhancer activity. Altogether, our results suggest that pou3f4 expression in inner ear might be under the control of distinct regulatory elements that fine-tune the spatio-temporal activity of this gene and provides novel data on the signaling mechanisms controlling pou3f4 function.This work has been supported by grants from MICINN to BA (BFU 2008-00714) and JLG-S (BFU2007-60042/BMC, Petri PET2007_0158, CSD2007-00008), a grant from the Junta de AndalucĆ­a to JLG-S (Proyecto de Excelencia CVI-3488) and a Juan de la Cierva postdoctoral fellowship to ARM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip

    Glucose Promotes Stress Resistance in the Fungal Pathogen Candida albicans

    Get PDF
    Metabolic adaptation, and in particular the modulation of carbon assimilatory pathways during disease progression, is thought to contribute to the pathogenicity of Candida albicans. Therefore, we have examined the global impact of glucose upon the C. albicans transcriptome, testing the sensitivity of this pathogen to wide-ranging glucose levels (0.01, 0.1, and 1.0%). We show that, like Saccharomyces cerevisiae, C. albicans is exquisitely sensitive to glucose, regulating central metabolic genes even in response to 0.01% glucose. This indicates that glucose concentrations in the bloodstream (approximate range 0.05ā€“0.1%) have a significant impact upon C. albicans gene regulation. However, in contrast to S. cerevisiae where glucose down-regulates stress responses, some stress genes were induced by glucose in C. albicans. This was reflected in elevated resistance to oxidative and cationic stresses and resistance to an azole antifungal agent. Cap1 and Hog1 probably mediate glucose-enhanced resistance to oxidative stress, but neither is essential for this effect. However, Hog1 is phosphorylated in response to glucose and is essential for glucose-enhanced resistance to cationic stress. The data suggest that, upon entering the bloodstream, C. albicans cells respond to glucose increasing their resistance to the oxidative and cationic stresses central to the armory of immunoprotective phagocytic cells

    Carbon Metabolism in Pathogenic Yeasts (Especially Candida): The Role of Cell Wall Metabolism in Virulence

    No full text
    corecore