6 research outputs found

    Therapeutic suggestion helps to cut back on drug intake for mechanically ventilated patients in intensive care unit

    Get PDF
    Research was conducted on ventilated patients treated in an intensive care unit (ICU) under identical circumstances; patients were divided into two groups (subsequently proved statistically identical as to age and Simplified Acute Physiology Score II [SAPS II]). One group was treated with positive suggestions for 15-20 min a day based on a predetermined scheme, but tailored to the individual patient, while the control group received no auxiliary psychological treatment. Our goal was to test the effects of positive communication in this special clinical situation. In this section of the research, the subsequent data collection was aimed to reveal whether any change in drug need could be demonstrated upon the influence of suggestions as compared to the control group. Owing to the strict recruitment criteria, a relatively small sample (suggestion group n = 15, control group n = 10) was available during the approximately nine-month period of research. As an outcome of suggestions, there was a significant drop in benzodiazepine (p < 0.005), opioid (p < 0.001), and the α2-agonist (p < 0.05) intake. All this justifies the presence of therapeutic suggestions among the therapies used in ICUs. However, repeating the trial on a larger sample of patients would be recommended. © 2013 Akadémiai Kiadó, Budapest

    Hypnosis Antenatal Training for Childbirth (HATCh): a randomised controlled trial [NCT00282204]

    Get PDF
    BACKGROUND: Although medical interventions play an important role in preserving lives and maternal comfort they have become increasingly routine in normal childbirth. This may increase the risk of associated complications and a less satisfactory birth experience. Antenatal hypnosis is associated with a reduced need for pharmacological interventions during childbirth. This trial seeks to determine the efficacy or otherwise of antenatal group hypnosis preparation for childbirth in late pregnancy. METHODS/DESIGN: A single centre, randomised controlled trial using a 3 arm parallel group design in the largest tertiary maternity unit in South Australia. Group 1 participants receive antenatal hypnosis training in preparation for childbirth administered by a qualified hypnotherapist with the use of an audio compact disc on hypnosis for re-enforcement; Group 2 consists of antenatal hypnosis training in preparation for childbirth using an audio compact disc on hypnosis administered by a nurse with no training in hypnotherapy; Group 3 participants continue with their usual preparation for childbirth with no additional intervention. Women > 34 and < 39 weeks gestation, planning a vaginal birth, not in active labour, with a singleton, viable fetus of vertex presentation, are eligible to participate. Allocation concealment is achieved using telephone randomisation. Participants assigned to hypnosis groups commence hypnosis training as near as possible to 37 weeks gestation. Treatment allocations are concealed from treating obstetricians, anaesthetists, midwives and those personnel collecting and analysing data. Our sample size of 135 women/group gives the study 80% power to detect a clinically relevant fall of 20% in the number of women requiring pharmacological analgesia – the primary endpoint. We estimate that approximately 5–10% of women will deliver prior to receiving their allocated intervention. We plan to recruit 150 women/group and perform sequential interim analyses when 150 and 300 participants have been recruited. All participant data will be analysed, by a researcher blinded to treatment allocation, according to the "Intention to treat" principle with comprehensive pre-planned cost- benefit and subgroup analyses. DISCUSSION: If effective, hypnosis would be a simple, inexpensive way to improve the childbirth experience, reduce complications associated with pharmacological interventions, yield cost savings in maternity care, and this trial will provide evidence to guide clinical practice

    Development and application of CP-ENDOR spectroscopy on protein radicals.

    Get PDF
    Electron-nuclear double resonance (ENDOR) spectroscopy is the method of choice for detecting magnetic nuclei in biomolecules which contain an unpaired electron spin. However, due to its low gyromagnetic ratio, the detection of Deuterium couplings is a particular challenge for ENDOR spectroscopy. The standard ENDOR sequences suïŹ€er from either low sensitivity or line shape distortions. Yet, deuterium nuclei are among the most interesting targets for ENDOR spectroscopy. Hydrogen-bond environments of biomolecules can be investigated at the molecular scale by 2H ENDOR spectroscopy in combination with H2O to D2O buïŹ€er exchange. Thus, aiming at improved sensitivity and/or spectral resolution, alternatives to the conventional ENDOR sequences have been proposed. The cross-polarization edited ENDOR approach (CP-ENDOR) merges electron-nuclear cross polarization with ENDOR spectroscopy and generates an alternative polarization transfer scheme for it. In this thesis, the capability of the CP-ENDOR sequence to detect small hyperïŹne couplings between an electron spin and deuterium nuclei with high sensitivity is demonstrated at 94GHz/3.4T. The CP-ENDOR polarization transfer mechanism involving deuterium nuclei was established from single crystal studies of a deuterated malonic acid radical. The matching conditions for cross polarization and the CP-ENDOR intensities were determined experimentally and validated from analytical and numerical predictions. The sensitivity for detecting small hyperïŹne couplings in CP-ENDOR is signiïŹcantly improved when omitting the initial pi/2 pulse of the sequence. The modiïŹed sequence has been named “without preparation pulse” (WOP) CP-ENDOR. Its performance was evaluated on the EPR standard organic radical 2H-BDPA in crystalline powder form and resulted in an improvement of the signal-to-noise ratio by a factor of approximately ïŹvein comparison to the standard CP-ENDOR. The enhancement is attributed to diïŹ€erent excitation proïŹles of the CP-ENDOR sequences, causing a central blind spot of diïŹ€erent width in the ENDOR spectra. The width of the central blind spot of WOP CP-ENDOR is determined from analytical and numerical calculations and scales with the strength of the applied microwave irradiation pulse during the CP-step of the sequence. Representative studies of the radical intermediate ND2Y731‱ in E.coli RNR illustrate the advantages of WOP CP-ENDOR in terms of signal-to-noise ratio and line shape in comparison to the well-established ENDOR sequences. Particularly, the WOP CPENDOR sequence has unmasked hyperïŹne tensor features of the amino group which are usually distorted by Mims blind spots in the ENDOR spectrum recorded with the wellestablished Mims ENDOR sequence. These advantages have allowed the establishment of the planarity of the functional group

    <sup>1</sup>H high field electron-nuclear double resonance spectroscopy at 263 GHz/9.4 T.

    No full text
    We present and discuss the performance of 1H electron-nuclear double resonance (ENDOR) at 263 GHz/9.4 T by employing a prototype, commercial quasi optical spectrometer. Basic instrumental features of the setup are described alongside a comprehensive characterization of the new ENDOR probe head design. The performance of three different ENDOR pulse sequences (Davies, Mims and CP-ENDOR) is evaluated using the 1H BDPA radical. A key feature of 263 GHz spectroscopy - the increase in orientation selectivity in comparison with 94 GHz experiments - is discussed in detail. For this purpose, the resolution of 1H ENDOR spectra at 263 GHz is verified using a representative protein sample containing approximately 15 picomoles of a tyrosyl radical. Davies ENDOR spectra recorded at 5 K reveal previously obscured spectral features, which are interpreted by spectral simulations aided by DFT calculations. Our analysis shows that seven internal proton couplings are detectable for this specific radical if sufficient orientation selectivity is achieved. The results prove the fidelity of 263 GHz experiments in reporting orientation-selected 1H ENDOR spectra and demonstrate that new significant information can be uncovered in complex molecular systems, owing to the enhanced resolution combined with high absolute sensitivity and no compromise in acquisition time

    Properties of site-specifically incorporated 3-Aminotyrosine in proteins to study redox-active tyrosines: E. coli ribonucleotide reductase as a paradigm.

    No full text
    3-Aminotyrosine (NH2Y) has been a useful probe to study the role of redox active tyrosines in enzymes. This report describes properties of NH2Y of key importance for its application in mechanistic studies. By combining the tRNA/NH2Y-RS suppression technology with a model protein tailored for amino acid redox studies (α3X, X = NH2Y), the formal reduction potential of NH2Y32(O‱/OH) (E°’ = 395 ± 7 mV at pH 7.08 ± 0.05) could be determined using protein film voltammetry. We find that the ΔE°’ between NH2Y32(O‱/OH) and Y32(O‱/OH) when measured under reversible conditions is ~300 – 400 mV larger than earlier estimates based on irreversible voltammograms obtained on aqueous NH2Y and Y. We have also generated D6-NH2Y731-α2 of RNR, which when incubated with ÎČ2/CDP/ATP generates the D6-NH2Y731‱-α2/ÎČ2 complex. By multi-frequency EPR (35, 94 and 263 GHz) and 34 GHz 1H ENDOR spectroscopies, we determined the hyperfine coupling (hfc) constants of the amino protons that establishes RNH2‱ planarity and thus minimal perturbation of the reduction potential by the protein environment. The amount of Y in the isolated NH2Y-RNR incorporated by infidelity of the tRNA/NH2Y-RS pair was determined by a generally useful LC-MS method. This information is essential to the utility of this NH2Y probe to study any protein of interest and is employed to address our previously reported activity associated with NH2Y-substituted RNR
    corecore