15 research outputs found

    Pattern of extinction of the woolly mammoth in Beringia.

    Get PDF
    Extinction of the woolly mammoth in Beringia has long been subject to research and speculation. Here we use a new geo-referenced database of radiocarbon-dated evidence to show that mammoths were abundant in the open-habitat of Marine Isotope Stage 3 (∼45-30 ka). During the Last Glacial Maximum (∼25-20 ka), northern populations declined while those in interior Siberia increased. Northern mammoths increased after the glacial maximum, but declined at and after the Younger Dryas (∼12.9-11.5 ka). Remaining continental mammoths, now concentrated in the north, disappeared in the early Holocene with development of extensive peatlands, wet tundra, birch shrubland and coniferous forest. Long sympatry in Siberia suggests that humans may be best seen as a synergistic cofactor in that extirpation. The extinction of island populations occurred at ∼4 ka. Mammoth extinction was not due to a single cause, but followed a long trajectory in concert with changes in climate, habitat and human presence

    Heavy reliance on plants for Romanian cave bears evidenced by amino acid nitrogen isotope analysis

    Get PDF
    Heavy reliance on plants is rare in Carnivora and mostly limited to relatively small species in subtropical settings. The feeding behaviors of extinct cave bears living during Pleistocene cold periods at middle latitudes have been intensely studied using various approaches including isotopic analyses of fossil collagen. In contrast to cave bears from all other regions in Europe, some individuals from Romania show exceptionally high δ15N values that might be indicative of meat consumption. Herbivory on plants with high δ15N values cannot be ruled out based on this method, however. Here we apply an approach using the δ15N values of individual amino acids from collagen that offsets the baseline δ15N variation among environments. The analysis yielded strong signals of reliance on plants for Romanian cave bears based on the δ15N values of glutamate and phenylalanine. These results could suggest that the high variability in bulk collagen δ15N values observed among cave bears in Romania reflects niche partitioning but in a general trophic context of herbivory

    Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core

    Get PDF
    Reconstructions of atmospheric CO2 concentrations based on Antarctic ice cores1,2 reveal significant changes during the Holocene epoch, but the processes responsible for these changes in CO2 concentrations have not been unambiguously identified. Distinct characteristics in the carbon isotope signatures of the major carbon reservoirs (ocean, biosphere, sediments and atmosphere) constrain variations in the CO2 fluxes between those reservoirs. Here we present a highly resolved atmospheric δ13C record for the past 11,000 years from measurements on atmospheric CO2 trapped in an Antarctic ice core. From mass-balance inverse model calculations3,4 performed with a simplified carbon cycle model, we show that the decrease in atmospheric CO2 of about 5 parts per million by volume (p.p.m.v.). The increase in δ13C of about 0.25‰ during the early Holocene is most probably the result of a combination of carbon uptake of about 290 gigatonnes of carbon by the land biosphere and carbon release from the ocean in response to carbonate compensation of the terrestrial uptake during the termination of the last ice age. The 20 p.p.m.v. increase of atmospheric CO2 and the small decrease in δ13C of about 0.05‰ during the later Holocene can mostly be explained by contributions from carbonate compensation of earlier land-biosphere uptake and coral reef formation, with only a minor contribution from a small decrease of the land-biosphere carbon inventory

    Heavy reliance on plants for Romanian cave bears evidenced by amino acid nitrogen isotope analysis

    Get PDF
    Heavy reliance on plants is rare in Carnivora and mostly limited to relatively small species in subtropical settings. The feeding behaviors of extinct cave bears living during Pleistocene cold periods at middle latitudes have been intensely studied using various approaches including isotopic analyses of fossil collagen. In contrast to cave bears from all other regions in Europe, some individuals from Romania show exceptionally high δ15N values that might be indicative of meat consumption. Herbivory on plants with high δ15N values cannot be ruled out based on this method, however. Here we apply an approach using the δ15N values of individual amino acids from collagen that offsets the baseline δ15N variation among environments. The analysis yielded strong signals of reliance on plants for Romanian cave bears based on the δ15N values of glutamate and phenylalanine. These results could suggest that the high variability in bulk collagen δ15N values observed among cave bears in Romania reflects niche partitioning but in a general trophic context of herbivory

    Potential carbon loss associated with post-settlement wetland conversion in southern Ontario, Canada

    No full text
    Abstract Background Natural wetlands can mitigate ongoing increases in atmospheric carbon by storing any net balance of organic carbon (peat) between plant production (carbon uptake) and microbial decomposition (carbon release). Efforts are ongoing to quantify peat carbon stored in global wetlands, with considerable focus given to boreal/subarctic peatlands and tropical peat swamps. Many wetlands in temperate latitudes have been transformed to anthropogenic landscapes, making it difficult to investigate their natural/historic carbon balance. The remaining temperate swamps and marshes are often treated as mineral soil wetlands and assumed to not accumulate peat. Southern Ontario in the Laurentian Great Lakes drainage basin was formerly a wetland-rich region that has undergone significant land use change since European settlement. Results This study uses southern Ontario as a case study to assess the degree to which temperate regions could have stored substantial carbon if it had not been for widespread anthropogenic land cover change. Here, we reconstruct the full extent and distribution of natural wetlands using two wetland maps, one for pre-settlement conditions (prior to 1850 CE) and the other for modern-day patterns of land use (2011 CE). We found that the pre-settlement wetland cover decreased by about 56% with the loss most significant for marshes as only 11% of predicted pre-settlement marshland area remains today. We estimate that pre-settlement wetlands held up to ~ 3.3 Pg of carbon relative to ~ 1.3 Pg for present-day (total across all wetland classes). Conclusions By not considering the recent carbon loss of temperate wetlands, we may be underestimating the wetland carbon sink in the pre-industrial carbon cycle. Future work is needed to better track the conversion of natural wetlands globally and the associated carbon stock change
    corecore