16 research outputs found

    Enhanced dielectric nonlinearity in epitaxial Pb0.92La0.08Zr0.52Ti0.48O3 thin films

    Get PDF
    This is the published version. Copyright 2014 American Institute of PhysicsHigh quality c-axis oriented epitaxial Pb 0.92La0.08Zr0.52Ti0.48O3 films were fabricated using pulsed laser deposition on (001) LaAlO3 substrates with conductive LaNiO3 buffers. Besides confirmation of the in-plane and out-of-plane orientations using X-ray diffraction, transmission electron microscopy study has revealed columnar structure across the film thickness with column width around 100 nm. Characterization of ferroelectric properties was carried out in comparison with polycrystalline Pb 0.92La0.08Zr0.52Ti0.48O3 films to extract the effect of epitaxial growth. It is found that the ratio between the irreversible Rayleigh parameter and reversible parameter increased up to 0.028 cm/kV at 1 kHz on epitaxial samples, which is more than twice of that on their polycrystalline counterparts. While this ratio decreased to 0.022 cm/kV with increasing frequency to100 kHz, a much less frequency dependence was observed as compared to the polycrystalline case. The epitaxial Pb 0.92La0.08Zr0.52Ti0.48O3 films exhibited a higher mobility of domain wall and the higher extrinsic contribution to the dielectric properties, as well as reduced density of defects, indicating that it is promising for tunable and low power consumption devices

    Enhanced energy density with a wide thermal stability in epitaxial Pb0.92La0.08Zr0.52Ti0.48O3 thin films

    Get PDF
    High-quality epitaxial Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films of thickness of 880 nm were fabricated using pulsed laser deposition on (001) Nb doped SrTiO3 (Nb:STO) substrates. Besides a confirmation of the epitaxial relationship [100]PLZT//[100]Nb:STO and (001)PLZT//(001)Nb:STO using X-ray diffraction, a transmission electron microscopy study has revealed a columnar structure across the film thickness. The recoverable energy density (Wrec) of the epitaxial PLZT thin film capacitors increases linearly with the applied electric field and the best value of 31 J/cm3 observed at 2.27 MV/cm is considerably higher by 41% than that of the polycrystalline PLZT film of a comparable thickness. In addition to the high Wrec value, an excellent thermal stability as illustrated in a negligible temperature dependence of the Wrec in the temperature range from room temperature to 180 C is achieved. The enhanced Wrec and the thermal stability are attributed to the reduced defects and grain boundaries in epitaxial PLZT thin films, making them promising for energy storage applications that require both high energy density, power density, and wide operation temperatures

    Correlation Analysis for Fiber Characteristics and Strength Properties of Softwood Kraft Pulps from Different Stages of a Bleaching Fiber Line

    No full text
    During sequential bleaching operations, pulp fiber properties are gradually changed due to mechanical and chemical treatments. In this study, the correlations between pulp or fiber properties such as kappa number, viscosity, total charge, fiber length, and zero-span tensile strength as well as Scott bond of elemental chlorine free (ECF) bleached softwood kraft pulps was investigated. The influence of zero-span tensile strength and Scott bond on tensile and tear strength was also discussed. The Scott bond and zero-span tensile strength showed a strong logarithmic correlation with pulp kappa number and pulp viscosity, while the regression coefficient for Scott bond was negative. An overall deterioration of paper tensile and tear strength from pulps whether beaten or not were observed along the multi-stage ECF bleaching operations. Changing contributions to sheet tensile or tear strength could be mostly attributed to changes in zero-span tensile strength rather than Scott bond during ECF bleaching

    Flexible ceramic film capacitors for high-temperature power electronics

    No full text
    Flexible ceramic film capacitors with high dielectric constant and high breakdown strength hold special promise for applications in power electronics. We deposited lanthanum-doped lead zirconate titanate (PLZT) films on aluminum-metallized polyimide films at room temperature by an aerosol deposition (AD) process and examined the electrical and dielectric properties of the PLZT films over a wide temperature range between −55 and 175 °C. The PLZT film capacitors fabricated by high deposition rate AD process not only satisfy X8R temperature rating but also exhibit superior volumetric and gravimetric specific capacitance. At room temperature, we measured a dielectric constant of ≈85, dielectric loss of ≈0.012, energy density of ≈13.2 J/cm3 with an applied voltage of ≈1000 V. A mean dielectric breakdown field strength (EB) of ≈1.25 MV/cm was determined by Weibull analysis for the ≈8-μm-thick PLZT film capacitors fabricated on flexible aluminum-metallized polyimide substrates. These results revealed that the PLZT-based ceramic film capacitors meet the requirements for advanced high-temperature power inverters. Our results demonstrated that AD process offers the greatest potential for producing low-cost, robust, compact and light-weight ceramic film capacitors with enhanced reliability for power inverters of electrical drive vehicles and various power electronic devices that are critical for high-efficiency energy conversion and renewable energy systems. Keywords: Ceramic coating, Aerosol deposition, Film capacitor, Energy conversion, Power electronic

    Sol−Gel Synthesis of High-Quality SrRuO 3

    No full text

    Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by Tuning Pb<sub>0.92</sub>La<sub>0.08</sub>­Zr<sub>0.52</sub>Ti<sub>0.48</sub>O<sub>3</sub> Film Thickness

    No full text
    The energy storage properties of Pb<sub>0.92</sub>La<sub>0.08</sub>­Zr<sub>0.52</sub>Ti<sub>0.48</sub>O<sub>3</sub> (PLZT) films grown via pulsed laser deposition were evaluated at variable film thickness of 125, 250, 500, and 1000 nm. These films show high dielectric permittivity up to ∼1200. Cyclic <i>I</i>–<i>V</i> measurements were used to evaluate the dielectric properties of these thin films, which not only provide the total electric displacement, but also separate contributions from each of the relevant components including electric conductivity (<i>D1</i>), dielectric capacitance (<i>D2</i>), and relaxor-ferroelectric domain switching polarization (<i>P</i>). The results show that, as the film thickness increases, the material transits from a linear dielectric to nonlinear relaxor-ferroelectric. While the energy storage per volume increases with the film thickness, the energy storage efficiency drops from ∼80% to ∼30%. The PLZT films can be optimized for different energy storage applications by tuning the film thickness to optimize between the linear and nonlinear dielectric properties and energy storage efficiency

    Spatial and temporal variations in environmental variables in relation to phytoplankton community structure in a eutrophic river reservoir

    No full text
    This study assesses spatial and temporal variation in environmental variables in relation to phytoplankton community size and composition in a typically eutrophic river reservoir (Hai River, northern China). The aim is to identify environmental parameters governing spatial and temporal differences in phytoplankton density and composition. Physicochemical parameters, including nutrient concentrations, were determined in monthly surface water samples from 2015. The average concentration of key eutrophication indexes (i.e., total phosphorous (TP: 0.24 ± 0.11 mg·L−1), total nitrogen (TN: 2.96 ± 1.60 mg·L−1), and Chlorophyll a (Chl a: 38.5 ± 11.5 mg·m−3)) substantially exceeded threshold values for eutrophic streams. Moreover, the eutrophication increased significantly downstream along the river reservoir as a consequence of an increasing fraction of agricultural and industrial land-use in the watershed. 103 phytoplankton species were identified, of which Chlorophyta was the dominated phylum (47 species), followed by Bacillariophyta (23 species) and Cyanophyta (18 species). No spatial difference in species distribution (ANOVA, p > 0.05) were found, while the temporal differences in species composition exhibited significant heterogeneity (ANOVA, p < 0.001). Phytoplankton abundance was highest in early summer (June and July), with maximum values increasing from 1.78 × 108 and 2.80 × 108 cells·L−1 in upstream and middle reaches, respectively, to 4.18 × 108 cells·L−1 furthest downstream. Cyanophyta, also known as Cyanobacteria and commonly referred to as blue-green algal, are known to constitute algae bloom in eutrophic systems. Common species are Microcystis marginata, Microcystis flos-aquae, and Oscillatoria sp. This was the dominant phyla during summer months, especially in the middle and lower reaches of the stream reservoir where it accounted for 88.9% of the phytoplankton community. Shannon weaver index (H’) and Pielous’s evenness index (J’) were extremely low (1.91–2.43 for H’ and 0.39–0.45 for J’) in samples collected from the lower part of the stream during the period of algal bloom, indicating an imbalance in the phytoplankton communities. Canonical correspondence analysis (CCA) indicated that water temperature (WT) and possible pH, along with nitrate (NO3-N) and nitrite (NO2-N), were the most important explanatory parameters in regard to phytoplankton composition. This research provides an understanding of the role of physicochemical water quality parameters in governing algal blooms and phytoplankton composition in river reservoirs
    corecore