69 research outputs found

    Multipole moments in Kaluza-Klein theories

    Get PDF
    This paper contains discussion of the problem of motion of extended i.e. non point test bodies in multidimensional space. Extended bodies are described in terms of so called multipole moments. Using approximated form of equations of motion for extended bodies deviation from geodesic motion is derived. Results are applied to special form of space-time.Comment: 11 pages, AMS-TeX, few misprints corrected, to appear in Classical and Quantum Gravit

    An axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime

    Full text link
    The problem of determining the electromagnetic and gravitational ``self-force'' on a particle in a curved spacetime is investigated using an axiomatic approach. In the electromagnetic case, our key postulate is a ``comparison axiom'', which states that whenever two particles of the same charge ee have the same magnitude of acceleration, the difference in their self-force is given by the ordinary Lorentz force of the difference in their (suitably compared) electromagnetic fields. We thereby derive an expression for the electromagnetic self-force which agrees with that of DeWitt and Brehme as corrected by Hobbs. Despite several important differences, our analysis of the gravitational self-force proceeds in close parallel with the electromagnetic case. In the gravitational case, our final expression for the (reduced order) equations of motion shows that the deviation from geodesic motion arises entirely from a ``tail term'', in agreement with recent results of Mino et al. Throughout the paper, we take the view that ``point particles'' do not make sense as fundamental objects, but that ``point particle equations of motion'' do make sense as means of encoding information about the motion of an extended body in the limit where not only the size but also the charge and mass of the body go to zero at a suitable rate. Plausibility arguments for the validity of our comparison axiom are given by considering the limiting behavior of the self-force on extended bodies.Comment: 37 pages, LaTeX with style package RevTeX 3.

    Axiomatic approach to radiation reaction of scalar point particles in curved spacetime

    Full text link
    Several different methods have recently been proposed for calculating the motion of a point particle coupled to a linearized gravitational field on a curved background. These proposals are motivated by the hope that the point particle system will accurately model certain astrophysical systems which are promising candidates for observation by the new generation of gravitational wave detectors. Because of its mathematical simplicity, the analogous system consisting of a point particle coupled to a scalar field provides a useful context in which to investigate these proposed methods. In this paper, we generalize the axiomatic approach of Quinn and Wald in order to produce a general expression for the self force on a point particle coupled to a scalar field following an arbitrary trajectory on a curved background. Our equation includes the leading order effects of the particle's own fields, commonly referred to as ``self force'' or ``radiation reaction'' effects. We then explore the equations of motion which follow from this expression in the absence of non-scalar forces.Comment: 17 pages, 1 figur

    Does Quantum Mechanics Clash with the Equivalence Principle - and Does it Matter?

    Get PDF
    With an eye on developing a quantum theory of gravity, many physicists have recently searched for quantum challenges to the equivalence principle of general relativity. However, as historians and philosophers of science are well aware, the principle of equivalence is not so clear. When clarified, we think quantum tests of the equivalence principle won't yield much. The problem is that the clash/not-clash is either already evident or guaranteed not to exist. Nonetheless, this work does help teach us what it means for a theory to be geometric.Comment: 12 page

    Combined Effect of Dietary Cadmium and Benzo(a)pyrene on Metallothionein Induction and Apoptosis in the Liver and Kidneys of Bank Voles

    Get PDF
    Bank voles free living in a contaminated environment have been shown to be more sensitive to cadmium (Cd) toxicity than the rodents exposed to Cd under laboratory conditions. The objective of this study was to find out whether benzo(a)pyrene (BaP), a common environmental co-contaminant, increases Cd toxicity through inhibition of metallothionein (MT) synthesis—a low molecular weight protein that is considered to be primary intracellular component of the protective mechanism. For 6 weeks, the female bank voles were provided with diet containing Cd [less than 0.1 Όg/g (control) and 60 Όg/g dry wt.] and BaP (0, 5, and 10 Όg/g dry wt.) alone or in combination. At the end of exposure period, apoptosis and analyses of MT, Cd, and zinc (Zn) in the liver and kidneys were carried out. Dietary BaP 5 Όg/g did not affect but BaP 10 Όg/g potentiated rather than inhibited induction of hepatic and renal MT by Cd, and diminished Cd-induced apoptosis in both organs. The hepatic and renal Zn followed a pattern similar to that of MT, attaining the highest level in the Cd + BaP 10-ÎŒg/g group. These data indicate that dietary BaP attenuates rather than exacerbates Cd toxicity in bank voles, probably by potentiating MT synthesis and increasing Zn concentration in the liver and kidneys

    Spin and quadrupole contributions to the motion of astrophysical binaries

    Full text link
    Compact objects in general relativity approximately move along geodesics of spacetime. It is shown that the corrections to geodesic motion due to spin (dipole), quadrupole, and higher multipoles can be modeled by an extension of the point mass action. The quadrupole contributions are discussed in detail for astrophysical objects like neutron stars or black holes. Implications for binaries are analyzed for a small mass ratio situation. There quadrupole effects can encode information about the internal structure of the compact object, e.g., in principle they allow a distinction between black holes and neutron stars, and also different equations of state for the latter. Furthermore, a connection between the relativistic oscillation modes of the object and a dynamical quadrupole evolution is established.Comment: 43 pages. Proceedings of the 524. WE-Heraeus-Seminar "Equations of Motion in Relativistic Gravity". v2: fixed reference. v3: corrected typos in eqs. (1), (57), (85

    The Publishing Policy of the European Physical Journal A

    No full text
    • 

    corecore