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Abstract We investigate the spin interaction and the gravi-
tational radiation thermally allowed in a head-on collision of
two rotating Hayward black holes. The Hayward black hole
is a regular black hole in a modified Einstein equation, and
hence it can be an appropriate model to describe the extent to
which the regularity effect in the near-horizon region affects
the interaction and the radiation. If one black hole is assumed
to be considerably smaller than the other, the potential of the
spin interaction can be analytically obtained and is dependent
on the alignment of angular momenta of the black holes. For
the collision of massive black holes, the gravitational radia-
tion is numerically obtained as the upper bound by using the
laws of thermodynamics. The effect of the Hayward black
hole tends to increase the radiation energy, but we can limit
the effect by comparing the radiation energy with the gravi-
tational waves GW150914 and GW151226.

1 Introduction

The collision of black holes is one of the ways by which
black holes become larger in our universe. In particular, mas-
sive black holes, whose masses range from several to several
tens of times the solar mass in recent detections at the laser
interferometer gravitational-wave observatory (LIGO) [1,2],
can drastically increase their masses through collision. For
example, in the signal GW150914, two black holes having
masses 36+5

−4M� and 29+4
−4M� merged to a single black hole

of a mass 62+4
−4M�, which is almost twice the mass of each

of the initial black holes. In addition, during their collision,
enormous energy was released in the form of gravitational
radiation, and was detected at LIGO. By the serial detection
of radiation from the collision, we can easily presume the
existence of many massive black holes that had formed in
the early stage of our universe and grown their masses by
colliding with one another.
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These massive black holes might have played an important
role as a gravitational impurity in the evolution of the early
universe. Suggested by the discovery of the Higgs particle
[3,4], one of possibilities is the metastability of the present
universe in the studies of the Higgs potential [5,6]. Before
decaying into the true vacua, the lifetime of this metastable
stage can be so long as to be compatible with that of our
universe, because a large energy barrier exists [7–9]. Inci-
dentally, the lifetime can be shortened to millions of Planck
times by a gravitational impurity such as a black hole, which
generates inhomogeneities that lower the energy barrier in
the Higgs potential [10,11]. Therefore, an investigation into
the collision of black holes is not only about the gravitational
wave, but also about the early universe.

The black hole is also treated as a thermal system. The tem-
perature of the black hole, called the Hawking temperature
[12,13], can be defined by its radiation through the quantum
effect. In addition, a specific part of energies included in the
mass of the black hole always increases despite the Penrose
process [14,15]. The energy is called the irreducible mass of
the black hole [16–18]. The behavior of the irreducible mass
is similar to that of the entropy in a thermal system, so that the
entropy of the black hole can be obtained in the form of the
square of the irreducible mass, which is proportional to the
area of the black holes horizon [19,20]. Based on these ther-
mal properties, thermodynamic laws are constructed for the
black hole system. Applying thermodynamics, we can esti-
mate the amount of gravitational radiation released during the
collision of the black holes. Since the collision of black holes
is an irreversible process, the entropy should increase from
the initial to final states in the process, according to the second
law of thermodynamics. For the case of the Schwarzschild
black hole, the radiation energy is obtained in terms of the
upper bound, which is sufficiently large to be included the
observation detected nowadays at LIGO [21]. For the case
of rotating black holes, that is, Kerr black holes, the spin
interaction between black holes contributes to the gravita-
tional radiation, where dependencies on the alignments of
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the rotating axes exist between them [22]. If one of the black
holes involved in the collision is small enough to be treated
as a spinning particle, the upper bound of the radiation corre-
sponds exactly to the potential of the spin interaction between
black holes obtained from the Mathisson–Papapetrou–Dixon
(MPD) equations for the spinning particle [23–29]. Hence,
we can expect that the gravitational radiation in the collision
of the black holes will be affected by any interactions between
black holes. In addition, the spin interaction may be changed
in the higher-dimensional spacetime, and this change is also
observable in the gravitational radiation released in the col-
lision of higher-dimensional rotating black holes [30–32].
Thus, we may estimate various aspects of black holes in
theories of gravity by investigating gravitational radiation,
despite their upper bounds.

Studies in numerical relativity provide more precise esti-
mation for gravitational radiation. The radiation released
in a head-on collision of black holes was studied with the
development of theoretical and computational frameworks
in numerical relativity [33–36] based on the Einstein field
equations. Then various aspects of the gravitational radia-
tion were studied and analyzed with different initial condi-
tions [37–43]. In particular, the waveforms of the gravita-
tional waves, which were obtained from numerical-relativity
simulation for the binary black hole merger, were produced
in catalogs to be applied to estimate and study parameters
related to events such as GW150914 and GW151226 [44–
49]. In addition, the detected gravitational waves were low-
frequency waves, and they behaved in line with our rough
expectations.

Further, in the near-horizon geometry of the black hole,
the quantum effect becomes important owing to the strong
gravity. One could expect that the geometry of the spacetime
can be modified from the quantum effect in the near-horizon
region, so that the curvature singularity inside the black hole
can be removed using the effect. Although various candidates
and modifications considering quantum gravity exist still, the
clear picture regarding quantum gravity is not well known.
A regular black hole is one of the modifications focusing
on removing a singularity, so that the black hole is regular
in the whole spacetime. The Hayward black hole is one of
regular black holes and a Bardeen-like black hole [50,51]
given from the modified Einstein equations describing the
formation and evaporation of the black hole from a vacuum.
The modification is mainly applied to the near-horizon region
of the black hole, and the extent to which the spacetime is
modified from Einstein’s spacetime is given as an additional
parameter g in the metric of the Hayward black hole, but far
from the horizon, the black hole is approximately the same
as the Schwarzschild black hole [51,52]. Now, the rotating
Hayward black hole is found by using the Newman–Janis
transformation [53] in which the black hole corresponds to
the Kerr black hole in the limit of g going to zero or an

asymptotic region. The horizon and the ergoregion of the
rotating Hayward black hole are slightly different from those
of the Kerr black hole in the dependency on θ direction [54–
56]. The Hayward black hole is originally obtained in the
modification of the Einstein equations mainly denoted as the
parameter g, but the classes of regular black holes are found in
gravity theories coupled with nonlinear electrodynamics, and
the Hayward black hole is included in the classes [57–64]. In
nonlinear electrodynamics, the source of regular black holes
is the magnetic charge related to the parameter g and different
from the Schwarzschild black hole, which has a mass that
gives rise to the singularity. Therefore, no singularity exists
in a regular black hole in nonlinear electrodynamics.

In this paper, we have investigated the upper bounds on
the gravitational radiation released in the collision of two
rotating Hayward black holes. Regular black holes, includ-
ing Hayward black holes, are candidates that can be described
as astrophysical black holes, such as Cygnus X-1, using
their deviation parameters [68–71]. However, the gravita-
tional radiation released when regular black holes collide is
not well studied despite serial detections at LIGO; hence,
our results might be a reference for further work on the grav-
itational wave from the models of regular black holes. In
addition, the rotating Hayward black hole is an appropri-
ate model to find the extent to which the regularity effect in
the near-horizon region of the black hole affects the radia-
tion released from the black hole system, when we assume
the regularity of the spacetime obtained from the modifica-
tion of the Einstein equations. We have reduced the rotating
Hayward black hole from three- to two-parameter systems
and found the upper bound thermally allowed by using the
numerical method owing to the θ -dependency on the hori-
zon of the black hole. Although the deviation of the Hayward
black hole mainly affects the near-horizon geometry of the
black hole, the effects can be observed in the upper bound on
the gravitational radiation and spin interaction between two
Hayward black holes. In addition, depending on the angle
between angular momenta of the black holes in the colli-
sion, the upper bounds can be deviated from those of Kerr
black holes due to the modification of the Hayward black
hole given by the parameters. We have shown the extent to
which the gravitational radiation depends on the parameters
of the Hayward black hole and have found the effective range
of the parameters by using the data from GW150914 and
GW151226.

Note that we have mainly treated the parameter g of the
Hayward black hole as a universal constant in the space-
time, because the Hayward black hole is originally obtained
from the modified Einstein equations, and the parameter is
related only to an energy level in the near-horizon region
of the black hole [51], and can work as a constant acting
on the spacetime in this case. However, the Hayward black
hole can also be a solution to the gravity theory coupled with
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nonlinear electrodynamics in which the parameter g is not
a universal constant, but a magnetic charge, as introduced
in Appendix A. Thus, each black hole has its own magnetic
charge, g1 and g2. The overall behaviors of the upper bounds
are similar in the two cases, but they also have differences
in specific examples. This is a similar case in the instability
for the Reissner–Nordström–anti-de Sitter (RN–AdS) black
hole depending on the model of gravity. In Einstein–Maxwell
gravity, the RN–AdS black hole is stable under perturbation,
but, in N = 8 gauged supergravity, the RN–AdS black hole
is unstable under the scalar mode perturbation [65–67].
Hence, the radiation might be dependent on the gravity mod-
els for the Hayward black holes. For the cases of the nonlin-
ear electrodynamics, we have provided a review and repro-
duced our results about the upper bounds on the radiations
in Appendix A.

The paper is organized as follows. In Sect. 2, we review
rotating Hayward black holes. In Sect. 3, we focus on the
contribution of the spin interaction in the upper bound on
the gravitational radiation when one of the black holes is
considerably smaller than the other. In Sect. 4, we describe
our framework for the bound and numerically investigate
the radiation bounds on the collision of massive black holes
under the effect of deviation parameters given as specific
ranges by using two LIGO data. In Sect. 5, we briefly sum-
marize our results.

2 Rotating Hayward black holes

The rotating Hayward black hole is obtained using the
Newman–Janis transformation [53] from the Hayward black
hole obtained from the modified Einstein equations [51]. The
rotating Hayward black hole is also a regular black hole that
has no curvature singularity in the whole spacetime, as given
by the Boyer–Lindquist coordinates,

ds2 = −
(

1 − 2mr

�

)
dt2 − 4amr sin2 θ

�
dtdφ + �

�
dr2

+ �dθ2 +
(
r2 + a2 + 2a2mr sin2 θ

�

)
sin2 θdφ2,

� = r2 − 2mr + a2, � = r2 + a2 cos2 θ, (1)

where the mass function is

m = M
r3+α�−α/2

r3+α�−α/2 + g3rβ�−β/2 .

The mass of the black hole is given as M , and the spin param-
eter is a. The angular momentum of the black hole is defined
as J = Ma. The metric of the black hole is modified in the
near-horizon region from the regularity effect. The extent to
which the black hole is constructed by modifying the Ein-

stein equations is denoted by the real deviation parameters
α, β, and g. The parameter g describes the deviation of the
energy level in the near-horizon region and is defined as pos-
itive. For simplicity, we reduce two parameters, α and β, to
one parameter, ρ, defined as ρ = α − β in Eq. (1). Then the
mass function is written as

m = M
r3+ρ

r3+ρ + g3�ρ/2 . (2)

Therefore, we will use parameters ρ and g without loss of
generality in this work. The rotating Hayward black hole is
regular in the whole spacetime [53]. The rotating Hayward
black hole is recovered to the Kerr black hole at g = 0, where
there is no effect of the modified Einstein equations working
in the near-horizon region of the black hole. In addition, the
black hole becomes a Schwarzschild black hole at g = 0
and a = 0 [54–56]. The horizon of the rotating Hayward
black hole can be obtained from � in Eq. (1) that depends on
the radial and θ coordinates, so that the horizon depends on
not only the coordinate r , but also the coordinate θ , except
ρ = 0. This is different from the Kerr black hole having a
sphere-like surface of the horizon. The properties of the outer
horizon can be classified into two cases along with the sign
of ρ, as shown in Figs. 1 and 3. Their surfaces and extremal
condition are changed according to the sign of ρ.

For a positive value of the parameter ρ, the location of the
outer horizon depends on the θ direction, and the surface of
the horizon is not a sphere in this coordinate system. Thus,
it is different from that of the Kerr black holes, as shown in
Fig. 1a.

The horizon also depends on the parameter g and becomes
small at large values of g due to the large regularity effects in
Fig. 1b. The outer horizon is the minimum at θ = 0, π and
the maximum at θ = π/2. The difference between parame-
ters is related to their effects on the black hole. The parameter
ρ changes the locations of the horizon at θ = 0, π , but the
parameter g changes the whole locations of the horizon. The
surface of the horizon is expected as Fig. 1c. For the pos-
itive cases, the north and south poles are shorter than the
equator. Similar to the location of the horizon, the extremal
spin parameter ae is also different for a given θ direction.
At the extremal spin parameter, the inner and outer horizons
are coincident to each other, and the temperature of the black
hole becomes zero. For the given parameters g and ρ, the
extremal spin parameter is the minimum at θ = 0, π and the
maximum at θ = π/2, as shown in Fig. 2. The parameter ρ

changes the extremal spin parameter except for θ = π/2 in
Fig. 2a, and the extremal spin parameter reacts sensitively to
the change of the parameter g. In the larger parameter g, the
extremal spin parameter becomes smaller in Fig. 2b. Since
the extremal spin parameter is different in the θ coordinate
for the given g and ρ parameters, in this work, we define the
extremal spin parameter for the positive ρ case as the value
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(a) (b) (c)The θ-directional dependency of the
outer horizon at g = 0.3, M = 1, and
a = 0.68.

The outer horizon with respect to g

at ρ = 1, M = 1 and a = 0.68 .
The surface of the outer

horizon under ρ = 1, g =
0.3, M = 1, and a = 0.68 .

,

Fig. 1 The outer horizon and its surface for a positive ρ

The extremal spin parameter with
respect to θ at g = 0.3 and M = 1 .

The Theextremal spin parameter with
respect to θ at ρ = 1 and M = 1 .

minimum extremal spin pa-
rameter with respect to ρ and g under
ρ = 1 and M = 1 .

(a) (b) (c)

Fig. 2 The extremal spin parameter for a positive ρ

at the north and south poles, the minimum value, because the
Hayward black hole can be still a black hole below the mini-
mum extremal spin parameter. The extremal spin parameter
depends on values of ρ and g as shown in Fig. 2c. As the
value of ρ increases, the extremal spin parameter decreases,
and hence the range of the spin parameters becomes tight.

For the negative sign of the parameter ρ, all properties
are opposite to the positive cases, as shown in Fig. 3. The
outer horizon is the maximum at θ = 0, π and the minimum
at θ = π/2 in Fig. 3a. In addition, a change of the param-
eter ρ varies the location of the horizon, except for that of
θ = π/2. The locations of the horizon are also sensitive to
the change of the parameter g. The horizon becomes small
at large values of the parameter g, as shown in Fig. 3b. The
horizon is long at the north and south poles of the black hole
and short at the equator, and the surface of the horizon looks
as shown in Fig. 3c, which is the opposite of the positive ρ

case. The extremal spin parameter ae is also opposite to that
of the positive cases in θ -directional behaviors, as shown in
Fig. 4. At the north and south poles of the black hole, the
extremal spin parameters are the maximum, and at the equa-
tor, the extremal spin parameter is the minimum, as shown in
Fig. 4a. For the change of the parameter g, the extremal spin

parameter also becomes small as seen in Fig. 4b. The defini-
tion of the extremal spin parameter for the negative ρ case is
also similar to that for the positive case. For the given ρ and g,
we set the extremal spin parameter at the value of the equator.
Further, the spin parameter of the black hole should be below
the minimum extremal spin parameter to still be considered a
black hole. The extremal spin parameter is still dependent on
the value of ρ and g for the negative case as shown in Fig. 4c,
where the extremal spin parameter decreases as in the posi-
tive cases. However, for larger g, the change is drastic with
respect to the change in ρ. If the spin parameter is larger than
its extremal value, the horizon disappears by parts beyond the
value. This is no longer a black hole, and hence we will not
be concerned with collisions between these kinds of objects.
Future work in which their thermal property is investigated
might be interesting. However, for completeness, we have
briefly tested the objects, as reported below.

If the spin parameter exceeds the extremal value ae, the
horizon starts disappearing at the points having a smaller
extremal value, not at the same time, as shown in Fig. 5a for
a positive ρ. Then the inside of the black hole is observable
through the open area. However, this situation does not vio-
late the weak cosmic censorship that prevents a naked singu-
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θ-directional dependency of the
outer horizon at g = 0.3, M = 1, and
a = 0.68 .

outer horizon with respect to g

at ρ = −1, M = 1, and a = 0.68 .
surface under

ρ = −1 and g = 0.3,
M = 1, and a = 0.68 .

The The The(a) (b) (c)

Fig. 3 The outer horizon and its surface for a negative ρ

extremal spin parameter wit
respect to θ at g = 0.3 and M = 1 .

extremal spin parameter with
respect to θ at ρ = −1 and M = 1 .

minimum extremal spin pa-
rameter for given ρ and g at M = 1 .

The The The(a) (b) (c)

Fig. 4 The extremal spin parameter for a negative ρ

outer horizons for ρ = 1, g =
0.3, and M = 1 .

function Δ in the θ direction
for ρ = 1, g = 0.3, and M = 1 .

surface of the outer
horizon for for ρ = 1, g =
0.3, M = 1, and a = 0.97 .

The The The(a) (b) (c)

Fig. 5 The outer horizons of overspinning cases for a positive ρ

larity in our universe [72–74], because there is no singularity
in its inside. The extremal spin parameter is the smallest at
the pole of the black hole for positive ρ cases, so that the
horizon first disappears at the pole in the radial direction.
However, there are horizon-like surfaces at θ directions in
Fig. 5b because the function of � still has two sign changes
in the θ direction. This means that even if the horizon surface

opens to the radial direction, we cannot observe the back of
the horizon. Considering the θ -directional surface, the sur-
face of the horizon can be as that shown in Fig. 5c to the
asymptotic observer.

For the negative ρ cases, their appearance is opposite to
the positive ones, as shown in Fig. 6a. Their extremal spin
parameter is the smallest at the equator, so that the horizon
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outer horizons for ρ = −1,
g = 0.3, and M = 1 .

function Δ in the θ direction
for ρ = −1, g = 0.3, and M = 1 .

horizon surface
for ρ = −1, g = 0.3,
M = 1, and a = 0.97 .

The The The(a) (b) (c)

Fig. 6 The outer horizons of overspinning cases for a negative ρ

area for ρ = 1 and g = 0.3 . area with respect to ρ for g =1 . area with respect to g for ρ = 1 .The The The(a) (b) (c)

Fig. 7 The area of the outer horizon of the rotating Hayward black hole

starts to disappear at the equator. Hence, the coverage of
the horizon on the θ direction becomes small along with the
increase in the spin parameter. In addition, as we have seen
in the case of positive ρ, even if there is no horizon in the
radial direction, the θ -directional horizon exists and forms
a closed surface instead of the radial direction, as shown in
Fig. 6b, so that the observer cannot see the whole spacetime
of the black object. Then the region veiled by the horizon
will look as it does in Fig. 6c.

In this work, we mainly focus on the upper bounds of the
thermally allowed gravitational radiation in the collision of
two Hayward black holes. The procedure of this work will
be based on the second law of thermodynamics. This will be
described in Sect. 4. The entropy of the black hole is given by
the Bekenstein–Hawking entropy SBH, which is proportional
to the horizon area AH of a black hole, so that

SBH = 1

4
AH, AH = 2π

∫ π

0

(
r2
h (θ) + a2

)
sin θdθ, (3)

where the area of the horizon surface is obtained from the
metric component gφφ and gθθ at the horizon, a function of
θ . However, we do not have an exact form of the horizon at

a given θ ; hence, the area of the horizon will be numerically
obtained in this work. The overall behaviors of the area are
shown in Fig. 7.

The area of the Hayward black hole is similar in the
response of changes in mass and spin parameter, as shown
in Fig. 7a. As the value of ρ increases, the area decreases
in Fig. 7b, but zero-spin parameter does not depend on ρ,
because the effect of ρ is removed in m in these cases. The
effects of g are greater than those of ρ, as Fig. 7c shows.
For the given parameters, the area of the black hole becomes
small as the parameter g increases. Since the Kerr black hole
is at g = 0, the Hayward black hole can be differentiated at
large values of g, so that the differences between Hayward
and Kerr black holes can be obtained at large values of g.

3 Spin interaction in rotating Hayward black hole

Spin interaction acts between two objects having a spin angu-
lar momentum. Two rotating black holes are also coupled
with each other by a spin interaction through which the poten-
tial energy can be released through the gravitational radia-
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tion. Before investigating into massive Hayward black holes,
we will obtain the potential of the spin interaction between
a Hayward black hole and a spinning particle, and then the
potential will correspond to the energy of the gravitational
radiation in the collision of two Hayward black holes when
one of the black holes is small enough compared with the
other. We suppose that a spinning particle has a spin inter-
action coupled with the angular momentum J1 of a rotating
black hole having mass M1 and spin parameter a1. The inter-
action acts as attractive or repulsive to the particle, and can be
shown using the equations of motion described by the MPD
equations [75–77]. For the spinning particle having mass m2

and four-velocity vμ, the MPD equations are given as in the
black hole spacetime,

Dpa

Ds
= −1

2
Ra
bcdv

bScd ,
DSab

Ds
= pavb − pbva, (4)

where the Riemann curvature tensor of the black hole is Ra
bcd .

The spin tensor of the particle Sab is defined as the difference
between its momentum pa and velocity va with respect to
the proper time s. The spin tensor is related to the spin vector
of the particle Sa as

Sa = 1

2m2

√−gεabcd pbScd . (5)

To obtain the trajectory of the spinning particle, we chose a
supplementary condition [78], and then the magnitude of the
spin J2 and mass m2 of the particle are obtained:

paS
ab = 0, J 2

2 = 1

2
SabS

ab,
DSab

Ds
= 0, m2

2 = −pa p
a,

pa = m2v
a . (6)

We simply assume an initial condition where the spinning
particle slowly comes into the pole of the rotating Hayward
black hole, and their rotating planes are parallel to each other.
The normalized velocity va and spin vector Sa are given as
follows under the initial condition:

va =
(

1√−gtt
, va, 0, 0

)
, Ja2 =

(
0,

J2√
grr

, 0, 0

)
, (7)

where the slowly moving particle can be treated as a nonrel-
ativistic particle; hence vr � 1. In the initial condition, the
energy of the spinning particle E is obtained as a conserved
quantity for the Killing vector of the time direction ξ t . Then

E = −pt − 1

2
Sab∇agbt , (8)

where the first term is the energy of the nonspinning particle,
and the effect of the spinning particle comes from the poten-
tial of the spin interaction Uspin given in the second term.
Due to the pole-to-pole collision, the potential is obtained at

the pole of the black hole θ = 0 and horizon r = r1:

Uspin = 2rρ+4
1 J1 J2(

r2
1 + a2

1

)2
(
rρ+3

1 + g3
(
r2

1 + a2
1

)ρ/2
) , (9)

where the angular momentum of the rotating black hole is
denoted as J1 = M1a1. The potential of the spin interaction
in Eq. (9) shows that the spinning particle undergoes attrac-
tion for J1 J2 < 0 and repulsion for J1 J2 > 0. The anti-
parallel alignment of the rotating planes between the particle
and the black hole has a negative potential acting as attrac-
tion, and their parallel alignments have a positive potential
acting as repulsion. Therefore, if we assume that a part of
the interaction energy is released as gravitational radiation,
the anti-parallel alignment may radiate more energy than the
parallel alignment, because the anti-parallel alignment has a
negative potential.

The potential of the Hayward black hole in Eq. (9) corre-
sponds to that of the Kerr black hole in the limit of g = 0.
Then, in the limit, the potential is given as

Uspin = 2r1 J1 J2(
r2

1 + a2
1

)2 , (10)

which is that of the Kerr black hole [22,32]. Therefore, our
result is consistent with the spin interaction obtained in the
solution of the Einstein gravity.

4 Gravitational radiation under collision of Hayward
black holes

The energy of the spin interaction certainly contributes to the
gravitational radiation released in the collision of two rotat-
ing black holes. When the mass of one black hole is negligible
in comparison with the other, most of the radiation energy
can be released from the spin interaction energy, which is a
reducible energy in the black hole system. In massive black
holes, the effect of the mass becomes important, and the radi-
ation energy originating from the mass will be greater than
that from the interaction. We now introduce the general pro-
cedure to obtain the upper bound on the gravitational radi-
ation generalized from the case of the Schwarzschild black
hole [21], and then we will estimate the approximate poten-
tial of the spin interaction and the maximum of the gravita-
tional radiation in the cases of small mass of a black hole and
arbitrary alignments between black holes. In addition, we
will apply the upper bound for the collision between massive
black holes and discuss the features of Hayward black holes.

We assume an initial state when two Hayward black holes
stay far from each other. The first black hole has mass M1

and angular momentum J1. M2 and J2 are the mass and
angular momentum of the second black hole, respectively.
The gravitational interaction is ignored in the initial state,
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because the black holes are separated by a long distance.
Then, attracted to each other, the black holes collide head-
on and form a Hayward black hole having mass and angular
momentum M3 and J3 in the final state. If the final black
hole has a smaller mass than the sum of masses of the initial
black holes, the loss of mass in the final state can be expected
to be released through the gravitational radiation. Hence, the
energy of the gravitational radiation Mr is obtained from

Mr = (M1 + M2) − M3. (11)

The collision of black holes is an irreversible process; there-
fore, the entropy should increase in the final state with respect
to that in the initial state, according to the second law of ther-
modynamics. We suppose that the area of the outer horizon is
denoted as AH(M1, J1) for the first black hole, AH(M2, J2)

for the second one, and AH(M3, J3) for the final black hole.
Since the Bekenstein–Hawking entropy is proportional to the
area of the horizon, the areas should satisfy

AH(M1, J1) + AH(M2, J2) ≤ AH(M3, J3), (12)

where the entropy of the gravitational radiation is not
included in that of the final state, because the radiation is a
very small portion of the mass for the initial state [21,22]. For
example, the released energy is expected to be approximately
4% of the total mass in GW150914 and GW151226 [1,2].
Hence, the consideration for the entropy of the radiation may
not change the upper bound for the radiation energy. In addi-
tion, we will show that the results are reasonable without the
consideration for the entropy of the radiation. In particular,
in the limit of the small mass, the bound on the radiation will
give exact results. The mass of the final black hole can be
obtained by solving Eq. (12) and imposing the conservation
of the angular momentum in the final state. Then

J1 + J2 = J3, (13)

because the radiation may be released in an arbitrary direc-
tion. Then net angular momentum can be conserved in this
process, so that the angular momentum of the final black
hole is still the sum of the angular momenta in the initial
state without any loss. In the final state, the magnitude of the
angular momentum will be one of variables that determine
the minimum of the horizon at the extremal condition. When
the angle between angular momenta J1 and J2 is defined as
ψ , the vector sum of the angular momenta is

J3 =
√
J 2

1 + J 2
2 + 2J1 J2 cos ψ, (14)

where the parallel alignment is for ψ = 0, and the anti-
parallel alignment is for ψ = π . From the inequality in
Eq. (12), the minimum mass of the final black hole M3,min is
obtained in terms of given initial states. Then, from Eq. (11),
the upper bound on the radiation Mr,bound is the thermally
allowed maximum energy released for a given initial state.

Therefore, the real radiation should be inside the upper bound

Mr,bound ≥ Mr . (15)

Most of the energy beyond the inequality in Eq. (15) occurs
owing to the radiation energy contributed from the mass. In
the inequality in Eq. (15), the effect of the black hole mass
may be too great to be considered in Mr,bound. Hence, the
upper bound is greater than that of the observation in the real
collisions detected at LIGO. Therefore, if we assume one of
the black holes in the initial state to be infinitesimally small,
the effect of the mass can be removed in Mr,bound, so that the
extent to which the spin interaction affects the radiation can
be clearly described in the collision of Hayward black holes.

4.1 Analytical approximation in limit of small mass

The collision of black holes can release the gravitational radi-
ation in which various interaction energies of the black hole
system are included. The energy of the spin interaction is one
of these energies included in the spinning black hole system.
In the collision, if one black hole is considerably smaller than
the other, the radiation from the interaction can be important
in that, following the mass loss of the initial black holes, the
upper bound of the radiation in Eq. (15) will be close to the
exact value. In the limit of the small mass, we assume that
the second black hole is sufficiently small in comparison with
the first black hole, and hence M1 � M2. In addition, the
angular momentum of the second black hole should be small
in the mass scale, and hence M2

1 � J2. To compare the grav-
itational radiation with the potential of the spin interaction in
Eqs. (9) and (15), we consider the pole-to-pole collision of
the black holes after calculating an arbitrary angle ψ . Under
the initial condition, the final black hole mass will be obtained
to satisfy the second law of thermodynamics in Eq. (12), so
that the area of the final black hole should be greater than
the sum of the areas of the initial black holes. However, the
area of the Hayward black hole is obtained by a numerical
integration owing to the dependency on the θ coordinate and
written as a numerical function. To find an analytical equa-
tion, the radius of the outer horizon is assumed to be a fixed
value at θ = 0 to remove the dependency on the θ direction,
because the radius of the horizon varies for the θ direction, as
shown in Figs. 1 and 3. Then the first black hole is supposed
to be the larger one having the radius of the outer horizon r1

and the second black hole has the radius r2, and r1 � r2 .
After the collision, the final black hole will have the horizon
radius r3 satisfying Eq. (12) rewritten as

4π(r2
1 + a2

1) + 4π(r2
2 + a2

2) ≤ 4π(r2
3 + a2

3), (16)

where we write down the area in a form similar to that of
the Kerr black hole for consistency with the g = 0 case [22].
The minimum mass of the final black hole or the upper bound
of the gravitational radiation is obtained from Eq. (11), by
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imposing the conservation in Eq. (13) and the equality of
Eq. (16). In addition, each value of the horizon radius is the
solution of the function � at the pole of θ = 0

�|θ=0 = 0. (17)

Because the angular momentum of the second black hole J2 is
small enough, the upper bound on the gravitational radiation
can be obtained in terms of the partial derivative with respect
to J2. Our derivation is valid in the limit of g going to zero,
because we assume the form of the area is as the case of the
Kerr black hole in Eq. (16). Therefore,

∂Mr,bound

∂ J2
= − |J1| cos ψ

M1

(
r2

1 +
(

J1
M1

)2
)

−
|J1|

(
r2

1 +
(

J1
M1

)2
)ρ/2

(3 + ρ) cos ψ

M1r
1+ρ
1

(
r2

1 +
(

J1
M1

)2
)2 g3

+O(g6), (18)

in which we consider the magnitudes of J1 and J2, because
their angle difference is given in ψ . The spin interaction
is a force with respect to the angular momenta of the two
black holes instead of the displacement, so that the change
in the radiation energy can be related to the interaction force.
The negative sign in Eq. (18) indicates that the interaction
between black holes is attractive for the anti-parallel align-
ment and repulsive for the parallel alignment. We can obtain
the interaction potential by treating Eq. (18) as a conserved
force with respect to J2. Then the negative sign is removed.
The potential of the spin interaction is obtained from Eq. (18)
taking the limit of g = 0 as

Uspin = 2|J1||J2|r1 cos ψ

(r2
1 + a2

1)2

+ 2|J1||J2|(3 + ρ) cos ψ

rρ
1 (r2

1 + a2
1)3−ρ/2

g3 + O(g6) , (19)

in which the first term imposed to ψ = 0 is that of the Kerr
black hole in Eq. (10) [22,32], and the second term concerns
the effect of the Hayward black hole. Hence, we can estimate
that the potential energy corresponds to the upper bound of
the gravitational radiation in the collision. However, the sec-
ond term is different from the expansion of Eq. (9) because
the increase of the area in Eq. (16) is not an exact equa-
tion and mimics the Kerr black hole. Therefore, gravitational
radiation is released as much as the potential of the spin inter-
action for which the amount of energy is approximately that
of the Kerr black hole in the limit of the small mass. Thus, a
more exact effect of the Hayward black hole in the radiation
should be obtained numerically under the consideration of
its exact area rather than Eq. (19).

4.2 Numerical analysis in massive cases

In the collision of massive black holes, the gravitational radi-
ation and their interaction should be investigated numerically,
because we cannot assume one of the black holes as a parti-
cle and ignore the effect of its mass. The upper bound on the
radiation is obtained from Eq. (11) using the minimum mass
of the final black hole in Eq. (12) by imposing the conserva-
tion of the angular momentum in Eq. (13). In this work, we
assume that the behavior of the real radiation Mr is propor-
tional to the upper bound on the radiation Mr,bound, so that we
will use Mr instead of Mr,bound for simplicity. In addition, to
apply the numerical method, we scale all parameters having
mass dimension by the mass of the most massive black hole
rather than the other, so that mass of the most massive black
hole is set to unity and M1.

In the mass scaling, the mass of the second black hole
will not exceed unity of the mass of the first black hole,
because we can set the mass of the most massive black hole
to unity by the scaling. Various parameters are related to
the Hayward black hole, and we first show the upper bound
on the radiation with respect to parameters such as M1, a1,
M2, a2, and ψ , which determine the initial state for fixed
parameters g and ρ. Then we will show dependencies on
parameters g and ρ. The upper bounds on the gravitational
radiation are obtained in Fig. 8 with respect to the second
black hole M2 and a2 for the given first black hole M1 and
a1 in g , ρ > 0 cases. The radiation Mr increases as the
mass of the black hole increases, as shown in Fig. 8a. For a
given spin parameter a2, the radiation starts at the minimum
mass of M2, because the Hayward black hole has an extremal
bound related to g and a. In addition, the minimum mass of
M2 for the a2 = 0 case is also related to the extremal bound
for g, which is different from the case for the Kerr black
hole. The radiation also depends on the parameters a1 and
a2 for fixed M1 and M2 in Fig. 8b, where the angle ψ is
fixed at 0, so that the positive spin parameter is in parallel
alignment, and the negative spin parameter is in anti-parallel
alignment. For the same magnitude for spin parameter a2, the
anti-parallel case releases more radiation than the parallel
case, because the slope, ∂Mr,bound

∂ J2
, is negative with respect

to J2. Since the source of the radiation is the energy of the
black hole system, greater energy of the initial state can be
extracted and released by the radiation due to the negative
potential of the anti-parallel alignment in Eq. (9) rather than
the positive potential from Eq. (9), even if the system has the
same energy in the initial condition. Therefore, the maximum
radiation occurs at the extremal spin parameter ae in the anti-
parallel case. For the same reason, the minimum radiation is
released at the parallel alignment having a positive potential.
The angle ψ 	= 0 between the angular momenta of the initial
black holes affects the radiation, as shown in Fig. 9.
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(a) The bounds for M2 at ρ = 1, g = 0.5, M1 = 1,
a1 = 0.35, and ψ = 0 .

(b) The bounds for a2 at ρ = 1, g = 0.5, M1 = 1, M2 = 1,
and ψ = 0 .

Fig. 8 The upper bound on the gravitational radiation for a positive ρ

(a) The bounds for ψ at the different M2 under ρ = 1,
g = 0.5, M1 = 1, a1 = 0.35, and a2 = 0.1 .

(b) The bounds for ψ at the different a2 under ρ = 1,
g = 0.5, M1 = 1, a1 = 0.35, and M2 = 1 .

Fig. 9 The upper bound on the gravitational radiation for a positive ρ

The magnitude of the angular momentum of the final black
hole is given as the vector sum in Eq. (14), and the angular
momentum of the final black hole is not parallel to that of the
initial black holes. Owing to the potential of the spin inter-
action, the radiation is minimum at the angle ψ = 0 for the
parallel alignment, and it becomes greater when the angle
ψ goes to ψ = π for the anti-parallel alignment. The mass
of the black hole and radiation energy increase together, as
shown in Fig. 9a. In addition, the radiation grows bigger as
the spin parameter a2 increases, as shown in Fig. 9b, which is
consistent with Fig. 8b, so that the anti-parallel cases release
more energy than the parallel cases because of the contribu-
tion of the spin interaction.

Gravitational radiation is also dependent on parameters g
and ρ, which are important constants to form a regular black
hole. The parameters are fixed for a given spacetime. The
radiation also depends on the parameters, but the dependency
on the parameter g is greater than that of ρ. For example, for
the same value of g in Figs. 8 and 9, the change in the radiation
for negative ρ is too small to ascertain, as shown in Fig. 10,

where the radiation for a negative ρ is slightly smaller than
that of the positive ρ.

The parameter ρ only works in the mass functionmρ(r, θ),
so that the change in the power of r by ρ affects a very small
portion of the mass function. However, the extremal condi-
tion for the spin parameter a depends on the parameter ρ,
and hence the negative and positive values of ρ are distin-
guishable in the radiation, as shown in Fig. 11.

The radiation increases as the value of ρ becomes large,
but the extremal bound on the spin parameter becomes
smaller at large values of ρ. Then, at a large enough value
of ρ, no initial black hole satisfying the extremal condition
exists. Therefore, the large-mass black hole covers larger val-
ues of ρ than the small mass black hole, as seen in Fig. 11a.
In addition, for a given spin parameter, the radiation also
increases as the value of ρ increases. However, the extremal
bound on the spin parameter becomes smaller at large value
of ρ; hence, at a large enough value of ρ, the radiation is lim-
ited, and no initial condition satisfying the extremal bound
exists.
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(a) The bounds for a2 at the different a1 under ρ = −1,
g = 0.5, M1 = 1, and M2 = 1 .

(b) The bounds for ψ at the different a2 under ρ = −1,
g = 0.5, M1 = 1, and M2 = 1 .

Fig. 10 The upper bound on the gravitational radiation for a negative ρ

(a) The bounds for ρ at the different M2 under g = 0.5,
M1 = 1, a1 = 0.35, and a2 = 0.5 .

(b) The bounds for ρ at the different a2 under g = 0.5,
M1 = 1, a1 = 0.35, and M2 = 1 .

Fig. 11 The upper bound on the gravitational radiation with respect to ρ

(a) The bounds on the radiation for g = 0.7, M1 = 1,
a1 = 0.15, and M2 = 1 .

(b) The bounds on the radiation for g = 0.7, M1 = 1,
a1 = 0.35, and a2 = 0 .

Fig. 12 The upper bound on the gravitational radiation with respect to ρ

Therefore, the parameter ρ slightly affect the value of the
radiation, but limits the range of the radiation by the extremal
bound to be small, as shown in Fig. 11b. In Fig. 12a, the
maximum radiation becomes small at the extremal values
at smaller values of ρ, and the extremal bound on the spin
parameter becomes smaller at larger values of ρ. For a given

value of ρ, the radiation for large values of ρ are slightly
greater than those for small values of ρ. The radiation about
the change of the mass M2 is almost not affected by the values
of ρ, as can be seen in Fig. 12b.

The parameter g is more important to the bound on the
radiation than the parameter ρ. For a change of the mass M2,
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(a) The bounds under ρ = 1, M1 = 1, a1 = 0.25, and
a2 = 0 .

(b) The bounds under ρ = −1, M1 = 1, a1 = 0.25, and
a2 = 0 .

Fig. 13 The upper bound on the radiation with respect to g

(a) The bounds under ρ = 1, M1 = 1, a1 = 0.15, and
a2 = 0 .

(b) The bounds ρ = 1, M1 = 1, a1 = 0.29, M2, and
a2 = 0.15 .

Fig. 14 The upper bound on the radiation with respect to g

the radiation is more sensitive to the parameter g (Fig. 13)
than the parameter ρ (Fig. 12).

In addition, for the change in the parameter g, the response
of the radiation to the sign of the parameter ρ is almost negli-
gible as seen in Fig. 13a and b. The parameter g is located in
the mass function m as a coefficient in the denominator, and
it is more affected by the mass and horizon than the parame-
ter ρ. The parameter g is also related to the extremal bound
on the spin parameter a. The extremal bound becomes small
at large values of the parameter g. Then the minimum mass
of the second black hole is limited, as shown in Fig. 13. For
a given mass, the radiation is released in the case of a larger
mass rather than a smaller mass. For the change of the spin
parameter a, the overall behaviors are still similar to each
values of g, but the amount of the radiation energy becomes
large at large values of g, as shown in Fig. 14.

More radiation is released in the anti-parallel alignment
than in the parallel alignment, because the spin interaction is
negative in the anti-parallel alignment, as shown in Fig. 14a
and b. Defined as a positive value, the parameter g gives the
minimum radiation at g = 0, which represents the Kerr black

hole. This can also be seen in Fig. 14b, where the radiation
depends on the angle ψ and becomes large at large values of
the parameter g.

4.3 Choice of parameters in rotating Hayward black hole

We will approximately apply our results and the properties of
the Hayward black hole to the GW150914 and GW151226
detected at LIGO to find the bound of the parameter g. In this
work, we set the most massive black hole in the initial state to
unity, and the black holes are described in consideration of the
mass ratio. The detections are compared with respect to the
final spin parameter a3, minimum mass Mmin, and radiation
slope Mr in Fig. 15. Note that the data of the GW150914 and
GW151226 have model dependencies and include errors [1,
2,79,80], but our approach is not to fix the exact value of the
parameter, and hence it will not change the result presented
in this section.

In Fig. 15a, the spin parameters of the final black holes,
0.67+0.06

−0.08 and 0.74+0.06
−0.06 in the GW150914 and GW151226

are given with the extremal spin parameters for each values
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ae

ae

(a) The extremal spin parameter un-
der ρ = 1 and M = 1 .

M

(b) The minimum mass under ρ = 1,
M = 1, and a = 0 .

M

Mr

(c) The upper bounds on the radia-
tion for ρ = 1, M1 = 1, a1 = 0, and
a2 = 0 , and the slope between LIGO
data .

Fig. 15 The upper bounds thermally allowed and detections of the LIGO

of g. As the value of g becomes large, the extremal spin
parameter decreases, so that the spin parameter of the final
black hole should be included in the extremal value at least.
As shown for the spin parameters with their range in Fig. 15a,
too great a large value of g is not allowed. The possible upper
bound of the parameter g ranges between 0.7 and 0.8, and the
value of the overlap range is at g = 0.7. In Fig. 15b, the mass
ratios of the second black hole are given with their ranges.
In the setting with M1 equal to unity, the second black hole
is smaller than the first, and the mass of the second black
hole should be below the minimum mass for a given value
of g. The mass ratios, estimated 0.79+0.18

−0.19 and 0.53+0.31
−0.31 in

the GW150914 and GW151226 [1,2,80] are applied approx-
imately with the minimum mass in Fig. 15b. The ratio ranges
are large, and hence a possible value of g is also large and
overlaps at approximately g = 0.7, interestingly. We use the
relation of the gravitational radiations between GW150914
and GW151226 in Fig. 15c. The energy ratios radiated in the
GW150914 and GW151226 are about 0.07 and 0.083. Their
slope of Mr,bound is from 7 to 8 times of the data, but the order
of times is the same as the ratio between Mr,bound and Mr ,
so that it is not from the slope itself. As shown in Fig. 15c,
the slope becomes low at the large value of g allowed by
the minimum mass. Using Fig. 15c, the allowed value of g
might be smaller than 0.5. Therefore, we can find that the
value of g may not become too large a value in the regular
black hole model. However, whatever our results are in this
section, more detection is needed to determine the precise
value of the parameter g.

5 Summary and conclusion

We investigated the spin interaction and gravitational radia-
tion released in the collision of two Hayward black holes. The
Hayward black hole is constructed from a modified Einstein
equation, having no curvature singularity in the whole space-

time due to the regularity effects. To find the extent of the
influence of the effect, indicated by g and ρ, on the radiation
released in the collision, we focused on the spin interaction
as well as the thermally allowed upper bound on the radia-
tion. We supposed an initial state where two Hayward black
holes stay far from each other and have an angle difference of
ψ between two angular momenta of the black holes. Slowly
coming together, the two black holes endure a head-on col-
lision and become a Hayward black hole in the final state. In
this procedure, we imposed the angular momentum conserva-
tion and the second law of thermodynamics. Then, according
to the first law of thermodynamics, the loss of the mass in the
final state was equated to the gravitational radiation released
in the collision.

First, the potential of the spin interaction was exactly
obtained using the MPD equation, when one of black holes
was approximated as a spinning particle in the limit of a small
mass. Then we compared the potential with the radiation in
the limit of the small mass and parameter g. The potential
and radiation corresponded in the limit of g going to zero,
the Kerr black hole case, but they did not at the value of
g greater than zero. However, we found that the alignment
of angular momenta between black holes surely affects the
radiation due to the potential of the spin interaction for any
values of the parameter g. The potential becomes positive
in the parallel alignment ψ = 0, and the released radiation
is smaller by as much as the value of the potential. On the
contrary, the anti-parallel alignment ψ = π has the negative
potential, and hence more radiation can be released, that is,
as much as the interaction energy.

We obtained numerically the thermally allowed upper
bound on the radiation. As expected in the analytical
approach, the radiation depended on the alignment of the
angular momenta, denoted as ψ , because of the contribution
of the spin interaction. Then the anti-parallel case released
more energy than the parallel case. The bound of the radi-
ation energy responded more sensitively to the parameter g
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than to ρ. As the parameter ρ increased from the negative
value, the bound of the radiation also increased and ended at
the finite positive value owing to the extremal condition, but
the increase of the radiation was very small compared with
that of ρ. For the increase of the parameter g, the bound on
the radiation also increased, and the range of the spin param-
eter allowed in the extremal condition became narrow. Then
we fixed the value of ρ to unity and determined the range
of g value using the GW150914 and GW151226 detected
by LIGO. Actually, our estimation of the value of g was
approximate, and the range of g is still broad. However, the
possible value of g is estimated to be less than 0.7 when
using the extremal spin parameter and minimum mass of the
Hayward black hole applied to the final state of the black
hole in the binary black hole merger. In addition, we used
the slope of the radiation with respect to the mass ratios of
the GW150914 and GW151226. Considering the minimum
mass and the order of difference between the bound and radi-
ation, the value of g is now expected to be smaller than 0.5.
To improve our estimation, we need to detect more gravita-
tional waves generated by a black hole binary having a very
small mass ratio, because our analysis becomes more precise
in the limit at which one of the black holes has a very small
mass compared with the other.
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Appendix A: Hayward black hole in nonlinear electrody-
namics

The Hayward black hole is not only a solution of a modi-
fied Einstein equation [51], but it is also found in Einstein
gravity coupled with nonlinear electrodynamics [63]. In this
appendix, we briefly review the Hayward black hole in non-
linear electrodynamics and show the bounds on the grav-
itational radiation. In fact, other regular black holes were
obtained in the Einstein gravity coupled with nonlinear elec-
trodynamics before the Hayward black hole [57–63]. The
action is given as

Sa = a
1

16π

∫
d4x

√−g (R − L(F)),

Fa = aFμνFμν, F = d A, (20)

where F is the Maxwell field strength. The equations of
motion are obtained from Eq. (20) as

Rμν − 1

2
gμνR = 2

(
LF F2

μν − 1

4
gμνL

)
,

∇μ (LFFμν ) = 0, LF = ∂L
∂F . (21)

Under the equations of motion, we consider the ansatz of the
static solution given as

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2(dθ2 + sin2 θdφ2),

A = Qm cos θdφ, (22)

where Qm is the magnetic charge related to the value of g. The
Hayward black hole appears in a large class of the solution
given in Eq. (22) applied to Eq. (21). When we specify the
Lagrangian density L(F) to

L(F) = 12 (σF)3/2

σ
(
1 + (σF)3/4)2 , (23)

where the mass Mg is the magnetic charge that differs from
the Schwarzschild mass. The solution of Eq. (23) is obtained:

f (r) = 1 − 2Mgr2

r3 + g3 , Mg = g3

σ
, (24)

which is the static Hayward black hole, so that we can obtain
the rotating Hayward black hole having a mass Mg = M .
In nonlinear electrodynamics, the reason for regularity is in
the mass Mg , which comes from the magnetic charge Qm .
Regular black holes in nonlinear electrodynamics have zero
Schwarzschild mass, which generates the curvature singu-
larity. The magnetic charge Qm is given in terms of g and
σ

Qm = g2

√
2σ

, (25)

where the value of g is limited to a positive number, because
the black hole solution only exists at the positive value. This
is a very brief review of the Hayward black hole in nonlinear
electrodynamics. The detailed properties can be found in Ref.
[63].

We also simply introduce the bounds on the radiation for
the Hayward black hole in nonlinear electrodynamics. The
only difference regarding the setting of the parameter g is
related to the magnetic charge. Following the analogy in
Sect. 4, we assume the collision of two black holes having
different magnetic charges in the initial state: one is the mass
M1 and magnetic charge Q1; the other is M2 and Q2. In the
final state, the merged black hole will be M3 and Q3. Other
conditions are the same as in Sect. 4, and we impose only
one more condition about the conservation of the magnetic
charge, which is rewritten as
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a

a

a

a

a

M

Mr

(a) The bounds under ρ = 1, g1 = 0.2, M1 = 1, a1 = 0.2,
and g2 = 0.2 .

a

a

a

a

a

a

Mr

(b) The bounds under ρ = 1, g1 = 0.2, M1 = 1, g2 = 0.2,
and M2 = 1 .

Fig. 16 The upper bounds on the radiation in nonlinear electrodynamics

g

g

g

g

gMr

(a) The bounds under M1 = 1, a1 =
0.2, g2 = 0.2, M2 = 1, and a2 = 0.2 .

a

a

a

a

a

Mr

(b) The bounds for g1 = g2 cases un-
der ρ = 1, M1 = 1, a1 = 0.2, and
M2 = 1 .

g

g

g

g

gMr

(c) The bounds for g1 = g2 under ρ =
1, M1 = 1, a1 = 0.2, M2 = 1, and
a2 = 0.2 .

Fig. 17 The upper bounds on the radiation with respect to ρ and g

Q1 + Q2 = Q3,
√
M1g1 + √

M2g2 = √
M3g3, (26)

where the rewritten form of the conservation is from Eqs. (24)
and (25). Then the bounds on the gravitational radiation are
given in Fig. 16.

The overall behaviors of the upper bounds are similar to
those of a modified Einstein equation in Fig. 8. The radiation
increases as the mass of black holes increases. In addition,
the alignment of black holes contributes to the radiation in
the same manner as does a Hayward black hole in a modified
Einstein equation. The upper bounds are also dependent on
the parameters ρ and g, as shown in Fig. 17. The parameter ρ

becomes large, and then the bound on the radiation decreases,
as shown in Figs. 11 and 17a. However, the response to the
change of the parameter g is in Fig. 17b and c, and is contrary
to the case shown in Figs. 13 and 14. Since the area of the
horizon becomes small at a large value of g, an increase of
g reduces the area of the final black hole according to the
conservation of the magnetic charge, so that the mass of the
final black hole becomes larger than that of the modified
Einstein equation. Therefore, in nonlinear electrodynamics,
the radiation of the Kerr black hole case is the largest in
varying parameter g.
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