4,300 research outputs found
Spectacular Role of Electron Correlation in the Hyperfine Interactions in States in Alkaline Earth Ions
The low-lying n(=3,4,5)d states alkaline earth ions are of vital
importance in a number of different physical applications. The hyperfine
structure constants of these states are characterized by unusually strong
electron correlation effects. Relativistic coupled-cluster theory has been
employed to carry out {\it ab initio} calculations of these constants. The role
of the all order core-polarization effects was found to be decisive in
obtaining good agreement of the results of our calculations with accurate
measurements. The present work is an apt demonstration of the power of the
coupled-cluster method to cope with strongly interacting configurations.Comment: Submitted to Physical Review Letters, 3 figures and 5 table
Solving Medium-Density Subset Sum Problems in Expected Polynomial Time: An Enumeration Approach
The subset sum problem (SSP) can be briefly stated as: given a target integer
and a set containing positive integer , find a subset of
summing to . The \textit{density} of an SSP instance is defined by the
ratio of to , where is the logarithm of the largest integer within
. Based on the structural and statistical properties of subset sums, we
present an improved enumeration scheme for SSP, and implement it as a complete
and exact algorithm (EnumPlus). The algorithm always equivalently reduces an
instance to be low-density, and then solve it by enumeration. Through this
approach, we show the possibility to design a sole algorithm that can
efficiently solve arbitrary density instance in a uniform way. Furthermore, our
algorithm has considerable performance advantage over previous algorithms.
Firstly, it extends the density scope, in which SSP can be solved in expected
polynomial time. Specifically, It solves SSP in expected time
when density , while the previously best
density scope is . In addition, the overall
expected time and space requirement in the average case are proven to be
and respectively. Secondly, in the worst case, it
slightly improves the previously best time complexity of exact algorithms for
SSP. Specifically, the worst-case time complexity of our algorithm is proved to
be , while the previously best result is .Comment: 11 pages, 1 figur
Laser spectroscopy of hyperfine structure in highly-charged ions: a test of QED at high fields
An overview is presented of laser spectroscopy experiments with cold,
trapped, highly-charged ions, which will be performed at the HITRAP facility at
GSI in Darmstadt (Germany). These high-resolution measurements of ground state
hyperfine splittings will be three orders of magnitude more precise than
previous measurements. Moreover, from a comparison of measurements of the
hyperfine splittings in hydrogen- and lithium-like ions of the same isotope,
QED effects at high electromagnetic fields can be determined within a few
percent. Several candidate ions suited for these laser spectroscopy studies are
presented.Comment: 5 pages, 1 figure, 1 table. accepted for Canadian Journal of Physics
(2006
Recoil correction to the bound-electron g factor in H-like atoms to all orders in
The nuclear recoil correction to the bound-electron g factor in H-like atoms
is calculated to first order in and to all orders in . The
calculation is performed in the range Z=1-100. A large contribution of terms of
order and higher is found. Even for hydrogen, the higher-order
correction exceeds the term, while for uranium it is above the
leading correction.Comment: 6 pages, 3 tables, 1 figur
Calculated Electron Fluxes at Airplane Altitudes
A precision measurement of atmospheric electron fluxes has been performed on
a Japanese commercial airliner (Enomoto, {\it et al.}, 1991). We have performed
a monte carlo calculation of the cosmic ray secondary electron fluxes expected
in this experiment. The monte carlo uses the hadronic portion of our neutrino
flux cascade program combined with the electromagnetic cascade portion of the
CERN library program GEANT. Our results give good agreement with the data,
provided we boost the overall normalization of the primary cosmic ray flux by
12\% over the normalization used in the neutrino flux calculation.Comment: in REVTEX, 12 pages + 4 figures available upon reques
Toward high-precision values of the self energy of non-S states in hydrogen and hydrogen-like ions
The method and status of a study to provide numerical, high-precision values
of the self-energy level shift in hydrogen and hydrogen-like ions is described.
Graphs of the self energy in hydrogen-like ions with nuclear charge number
between 20 and 110 are given for a large number of states. The self-energy is
the largest contribution of Quantum Electrodynamics (QED) to the energy levels
of these atomic systems. These results greatly expand the number of levels for
which the self energy is known with a controlled and high precision.
Applications include the adjustment of the Rydberg constant and atomic
calculations that take into account QED effects.Comment: Minor changes since previous versio
Complete two-loop correction to the bound-electron g factor
Within a systematic approach based on the dimensionally regularized
nonrelativistic quantum electrodynamics, we derive the complete result for the
two-loop correction to order for the factor
of an electron bound in an state of a hydrogenlike ion. The results
obtained significantly improve the accuracy of the theoretical predictions for
the hydrogenlike carbon and oxygen ions and influence the value of the electron
mass inferred from factor measurements.Comment: 11 pages, 1 figur
Relevance of baseline hard proton-proton spectra for high-energy nucleus-nucleus physics
We discuss three different cases of hard inclusive spectra in proton-proton
collisions: high single hadron production at 20 GeV and
at = 62.4 GeV, and direct photon production at = 200 GeV;
with regard to their relevance for the search of Quark Gluon Plasma signals in
A+A collisions at SPS and RHIC energies.Comment: Proceeds. Hot Quarks 2004 Int. Workshop on the Physics of
Ultrarelativistic Nucleus-Nucleus Collisions. 26 pages. 26 figs. [minor
corrs., refs. added
Perspectives of people in Mali toward genetically-modified mosquitoes for malaria control
Background:
Genetically-modified (GM) mosquitoes have been proposed as part of an integrated vector control strategy for malaria control. Public acceptance is essential prior to field trials, particularly since mosquitoes are a vector of human disease and genetically modified organisms (GMOs) face strong scepticism in developed and developing nations. Despite this, in sub-Saharan Africa, where the GM mosquito effort is primarily directed, very little data is available on perspectives to GMOs. Here, results are presented of a qualitative survey of public attitudes to GM mosquitoes for malaria control in rural and urban areas of Mali, West Africa between the months of October 2008 and June 2009.
Methods:
The sample consisted of 80 individuals - 30 living in rural communities, 30 living in urban suburbs of Bamako, and 20 Western-trained and traditional health professionals working in Bamako and Bandiagara. Questions were asked about the cause of malaria, heredity and selective breeding. This led to questions about genetic alterations, and acceptable conditions for a release of pest-resistant GM corn and malaria-refractory GM mosquitoes. Finally, participants were asked about the decision-making process in their community. Interviews were transcribed and responses were categorized according to general themes.
Results:
Most participants cited mosquitoes as one of several causes of malaria. The concept of the gene was not widely understood; however selective breeding was understood, allowing limited communication of the concept of genetic modification. Participants were open to a release of pest-resistant GM corn, often wanting to conduct a trial themselves. The concept of a trial was reapplied to GM mosquitoes, although less frequently. Participants wanted to see evidence that GM mosquitoes can reduce malaria prevalence without negative consequences for human health and the environment. For several participants, a mosquito control programme was preferred; however a transgenic release that satisfied certain requirements was usually acceptable.
Conclusions:
Although there were some dissenters, the majority of participants were pragmatic towards a release of GM mosquitoes. An array of social and cultural issues associated with malaria, mosquitoes and genetic engineering became apparent. If these can be successfully addressed, then social acceptance among the populations surveyed seems promising
- …
