58 research outputs found

    Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures

    Full text link
    High-entropy alloys are an intriguing new class of metallic materials that derive their properties from being multi-element systems that can crystallize as a single phase, despite containing high concentrations of five or more elements with different crystal structures. Here we examine an equiatomic medium-entropy alloy containing only three elements, CrCoNi, as a single-phase face-centered cubic (fcc) solid solution, which displays strength-toughness properties that exceed those of all high-entropy alloys and most multi-phase alloys. At room temperature the alloy shows tensile strengths of almost 1 GPa, failure strains of ~70%, and KJIc fracture-toughness values above 200 MPa.m1/2; at cryogenic temperatures strength, ductility and toughness of the CrCoNi alloy improve to strength levels above 1.3 GPa, failure strains up to 90% and KJIc values of 275 MPa.m1/2. Such properties appear to result from continuous steady strain hardening, which acts to suppress plastic instability, resulting from pronounced dislocation activity and deformation-induced nano-twinning.Comment: 7 pages, 4 figure

    GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments

    Get PDF
    Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni50Fe50, Ni50Co50) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed in each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni50Co50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni50Fe50, a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni50Fe50. The significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior.Peer reviewe

    Fabrication of highly dense isotropic Nd-Fe-B bonded magnets via extrusion-based additive manufacturing

    Get PDF
    Isotropic bonded magnets with a high loading fraction of 70 vol.% Nd-Fe-B are fabricated via an extrusion-based additive manufacturing, or 3D printing system that enables rapid production of large parts for the first time. The density of the printed magnet is 5.15 g/cm3. The room temperature magnetic properties are: intrinsic coercivity Hci = 8.9 kOe (708.2 kA/m), remanence Br = 5.8 kG (0.58 Tesla), and energy product (BH)max = 7.3 MGOe (58.1 kJ/m3). The as-printed magnets are then coated with two types of polymers, both of which improve the thermal stability at 127 {\deg}C as revealed by flux aging loss measurements. Tensile tests performed at 25 {\deg}C and 100 {\deg}C show that the ultimate tensile stress (UTS) increases with increasing loading fraction of the magnet powder, and decreases with increasing temperature. AC magnetic susceptibility and resistivity measurements show that the 3D printed Nd-Fe-B bonded magnets exhibit extremely low eddy current loss and high resistivity. Finally, we show that through back electromotive force measurements that motors installed with 3D printed Nd-Fe-B magnets exhibit similar performance as compared to those installed with sintered ferrites

    Extreme Fermi surface smearing in a maximally disordered concentrated solid solution

    Get PDF
    We show that the Fermi surface can survive the presence of extreme compositional disorder in the equiatomic alloy Ni0.25Fe0.25Co0.25Cr0.25. Our high-resolution Compton scattering experiments reveal a Fermi surface which is smeared across a significant fraction of the Brillouin zone (up to 40% of 2Ď€/a). The extent of this smearing and its variation on and between different sheets of the Fermi surface have been determined, and estimates of the electron mean free path and residual resistivity have been made by connecting this smearing with the coherence length of the quasiparticle states

    Directional Solidification, Microstructures and Mechanical Properties of Cr-Cr3Si Eutectic Alloys

    Get PDF
    Alloys based on intermetallics have been considered for high temperature structural applications. However, many of these alloys suffer from intrinsic brittleness and low fracture toughness at ambient temperature. Therefore, ductile-phase-toughened intermetallic composites are being investigated as a means to improve the fracture toughness. A subset of this class of materials is in-situ composites produced by directional solidification of intermetallic eutectics. In this study, the Cr-Cr3Si eutectic system is selected as a model system to investigate composites by directional solidification, where the strong, but brittle Cr3Si is combined with a more ductile Cr-rich solid solution. A series of binary Cr-Si alloys with silicon concentrations ranging from 13 to 24 at.% were produced by arc melting and drop casting. These compositions span the composition (15 at.% Si) at which a eutectic reaction is reported in the phase diagram. The microstructure of the Cr-16.05 at.% Si alloy is fully lamellar and devoid of any pro-eutectic phases suggesting that the best composition for obtaining a fully lamellar structure is Cr-16.05 at.% Si, rather than the eutectic composition (Cr-15 at.% Si) indicated in the phase diagram. The eutectic microstructure consists of alternating lamellae of Cr (solid solution) and Cr3Si (intermetallic). Uniform and well-aligned lamellar structures were obtained over a fairly wide range of solidification conditions, but not at very low or very high growth rates where degenerate and cellular structures, respectively, were obtained. The lamellar spacing was found to increase with decreasing solidification rate, in agreement with the Jackson-Hunt theory. In addition, for a fixed growth rate, the lamellar spacing was found to increase with increasing rotation rate. The growth directions in the lamellar eutectic were found to be \u3c100\u3e for the Cr3Si phase and \u3c111\u3e for the Cr solid solution phase. Eutectic microstructures (rod or lamellar) could also be produced at off-eutectic compositions, but only for a limited range of growth conditions. The mechanical properties of the individual lamellae and the Cr-Cr3Si composites were examined by nanoindentation, Vicker’s hardness testing and three-point bend testing. It was found that the Vicker’s hardness of Cr-Cr3Si composites is about HV847, independent of the lamellar spacing. The Young’s modulus of the Cr-Cr3Si eutectic composites measured by ultrasonic techniques is 312 GPa, which is in reasonably good agreement with the nanoindentation results (within ~5%). The fracture toughness of single crystals of Cr3Si is very low (~2.6 MPaÖm). Combination with a more ductile phase (Cr-rich solid solution) to make “ductile phase toughened” composites increases the fracture toughness to maximum 8.5 MPaÖm. The fracture toughness of lamellar microstructures with fine spacings is slightly higher than that of microstructures with coarse spacings
    • …
    corecore