49 research outputs found

    Application of fuzzy classifier fusion in determining productive zones in oil wells

    No full text
    International audienceThis study is an application of data fusion techniques, especially fuzzy theory, in determining oil producing zones through four nearby wells, located on an oil field in south west of Iran. Two fusing techniques, used here are based on Bayesian and fuzzy theories. At first, two Bayesian classifiers are being constructed by training in two different wells; then a fuzzy operator, called Sugeno discrete integral, is used to fuse outputs of two mentioned Bayesian classifiers. Finally, it is concluded that using fuzzy classifier fusion improves not only certainty and confidence of decision making, but also generalization ability of determining productive zones

    Traffic Flow Prediction Using MI Algorithm and Considering Noisy and Data Loss Conditions: An Application to Minnesota Traffic Flow Prediction

    Get PDF
    Traffic flow forecasting is useful for controlling traffic flow, traffic lights, and travel times. This study uses a multi-layer perceptron neural network and the mutual information (MI) technique to forecast traffic flow and compares the prediction results with conventional traffic flow forecasting methods. The MI method is used to calculate the interdependency of historical traffic data and future traffic flow. In numerical case studies, the proposed traffic flow forecasting method was tested against data loss, changes in weather conditions, traffic congestion, and accidents. The outcomes were highly acceptable for all cases and showed the robustness of the proposed flow forecasting method

    State Estimation Fusion for Linear Microgrids over an Unreliable Network

    Get PDF
    Microgrids should be continuously monitored in order to maintain suitable voltages over time. Microgrids are mainly monitored remotely, and their measurement data transmitted through lossy communication networks are vulnerable to cyberattacks and packet loss. The current study leverages the idea of data fusion to address this problem. Hence, this paper investigates the effects of estimation fusion using various machine-learning (ML) regression methods as data fusion methods by aggregating the distributed Kalman filter (KF)-based state estimates of a linear smart microgrid in order to achieve more accurate and reliable state estimates. This unreliability in measurements is because they are received through a lossy communication network that incorporates packet loss and cyberattacks. In addition to ML regression methods, multi-layer perceptron (MLP) and dependent ordered weighted averaging (DOWA) operators are also employed for further comparisons. The results of simulation on the IEEE 4-bus model validate the effectiveness of the employed ML regression methods through the RMSE, MAE and R-squared indices under the condition of missing and manipulated measurements. In general, the results obtained by the Random Forest regression method were more accurate than those of other methods.This research was partially funded by public research projects of Spanish Ministry of Science and Innovation, references PID2020-118249RB-C22 and PDC2021-121567-C22 - AEI/10.13039/ 501100011033, and by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors, reference EPUC3M17

    Real Time Emotional Control for Anti-Swing and Positioning Control of SIMO Overhead Traveling Crane

    Get PDF
    Jamali MR, Arami A, Hosseini B, Moshiri B, Lukas C. Real Time Emotional Control for Anti-Swing and Positioning Control of SIMO Overhead Traveling Crane. International Journal of Innovative Computing, Information, and Control. 2008;4(9):2333-2344

    A systematic approach for modeling of waterflooding process in the presence of geological uncertainties in oil reservoirs

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.compchemeng.2017.12.012 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In this paper, a systematic approach which is able to consider different types of geological uncertainty is presented to model the waterflooding process. The proposed scheme, which is based on control and system theories, enables the experts to apply suitable techniques to optimize the production. By using the developed methodology, a reasonable mapping between defined system inputs and outputs in frequency domain and around a specific operating point is established. In addition, a nominal model for the process as well as a lumped representation for uncertainty effects are provided. Based on the proposed modeling mechanism, reservoir management goals can be pursued in the presence of uncertainty by utilization of complicated control and optimization strategies. The developed algorithm has been simulated on 10th SPE-model#2. Observed results have shown that the introduced methodology is able to effectively model the dynamics of waterflooding process, while taking into account the assumed induced geological uncertainty
    corecore