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Highlights 

 A system theory-based modeling approach for waterflooding process in oil reservoirs is 

proposed. 

 Impact of geological uncertainties on hydrocarbon recovery efficiency is modeled and 

quantified.  

 System identification, Monte-Carlo Simulations and pattern recognition have been used 

in the algorithm. 

 Reservoir management goals can be pursued in the presence of uncertainty, based on the 

obtained model.  

 Developed approach has been evaluated in MRST environment on 10th SPE-model#2. 
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Abstract: 
 
In this paper, a systematic approach which is able to consider different types of geological 

uncertainty is presented to model the waterflooding process. The proposed scheme, which is 

based on control and system theories, enables the experts to apply suitable techniques to 

optimize the production. By using the developed methodology, a reasonable mapping between 

defined system inputs and outputs in frequency domain and around a specific operating point is 

established. In addition, a nominal model for the process as well as a lumped representation for 

uncertainty effects are provided. Based on the proposed modeling mechanism, reservoir 

management goals can be pursued in the presence of uncertainty by utilization of complicated 

control and optimization strategies. The developed algorithm has been simulated on 10th SPE-

model#2. Observed results have shown that the introduced methodology is able to effectively 

model the dynamics of waterflooding process, while taking into account the assumed induced 

geological uncertainty. 
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1. Introduction: 

It is predicted that the world energy demand will increase by 50% until 2030, and will be near 

300 million barrels per day of petroleum equivalent (ExxonMobil, 2004). On the other hand, oil 

and gas are still the prevailing available sources to satisfy more than 60% of the current energy 

global demand. That value is estimated to remain approximately constant for the coming years. 

Hence, the importance of doing research on different aspects of hydrocarbon energy is 

undeniable. Although hydrocarbon resources seem to be adequate to meet the increasing request 

in future decades, it will become more difficult to satisfy the growing demand for oil and gas due 

to their non-renewable nature. In addition, most of the available reservoirs are almost mature and 

exploration for large new fields is becoming more and more complicated. These facts attract 

much attention to enhanced/improved oil recovery (EOR/IOR) concepts to increase the 

production efficiency (Sarma, 2006; Tavallali et al., 2013; Giuliani and Camponogara, 2015; 

Tavallali and Karimi, 2016a; Zhang et al, 2017). 

Oil and gas companies always intend to manage the reservoir to increase the fiscal benefits, even 

under the presence of inherent geological uncertainties. To this aim, quantifying the effects of 

uncertainties is really important for the decision makers. Recent achievements in computing and 

measuring technologies along with the novel progresses in practical methodologies enable the 

reservoir experts to make more accurate and reliable decisions. Hence, reservoir modeling 

approaches, which are capable of considering the inherent uncertainties and also being used in 

reservoir management strategies, have become active research areas in recent years (Gaasø et al., 

2014; Tavallali and Karimi, 2016b). 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4 
 

To reduce the influence of uncertainty over the reservoir behavior, surveillance operations are 

regularly performed for accurate data collection. The gathered data can be used in reservoir 

management optimization by being incorporated to the commercial simulators to construct the 

model for estimating the reservoir future behavior. Unfortunately, existing uncertainty in the 

available information adversely affects the reliability of the obtained results from the simulator. 

So, establishment of an appropriate mapping between the quantified uncertainty and the gathered 

production data can be a serious concern (Le and Reynolds, 2014). 

In general, “history matching” is a well-known solution for tackling with the challenging task of 

reliable subsurface characterization. In history matching (HM), the parameters of the model are 

adjusted such that the model regenerates the recorded data with acceptable accuracy. It should be 

noted that direct simulation of flow and transport phenomena in heterogeneous media is 

computationally expensive. So, representation of subsurface uncertain characteristics, for being 

used to evaluate the reliability of model‟s outputs, is of paramount importance in history 

matching procedure. Accurate statistical description of the reservoir, which should be consistent 

with available measured data, requires the engagement in valid parametrization of subsurface 

uncertain characteristics (Ginting et al., 2014). Nowadays, spatial statistical techniques have 

attracted a wide attention to characterize the uncertainty in hydrocarbon reservoirs. Generally, 

random field generators are used to represent the range of possible spatial subsurface patterns 

(Feyen and Caers, 2006). In addition, inverse modeling techniques based on dynamic data are 

among the common solutions to represent the dynamics of the reservoir (Oliver and Chen, 2011; 

Zhou et al., 2014). In inverse modeling, calculating the complex nonlinear relationship between 

model parameters and the data often requires the solution of CPU demanding partial differential 

equations (PDE‟s). This fact may limit the utilization of those techniques in practice. In addition, 
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due to the ill-posedness nature of the inverse modeling problem, which is basically caused by 

nonlinearity and lack of enough recorded dynamic data, availability of a spatial prior model is 

mandatory. Neglecting prior knowledge such as petrophysical properties can result in the models 

that are geologically unrealistic and have limited predicting capability. So, developing models or 

inverse solutions that span a realistic range of uncertainty is among the main concerns for the 

modelers (Caers, 2012). In recent contributions, it has been demonstrated that time-consuming 

inverse reservoir modeling may not always be necessary for prediction of reservoir behavior 

(Satija, A., Caers, 2014; Scheidt et al., 2015). This fact stimulates further research to look for fast 

modeling techniques with the ability of uncertainty handling and also be applicable in reservoir 

studies such as future production estimation. With few drilled wells, reservoir heterogeneity and 

also limited available information, acceptable modeling of uncertainty effects is a critical 

prerequisite to plan for drilling new wells or to define optimal production profiles (Park et al., 

2013). The initial step to analyze uncertainty influences on hydrocarbon recovery efficiency is to 

precisely specify the relationship between uncertain parameters and the recovery factor (Larue 

and Hovadik, 2008). Generally, thorough and comprehensive earth models are usually used in 

waterflooding simulation by commercial simulators to accurately estimate the value of recovery 

factor, amounts of produced oil and water during the operational life, and to make efficient 

decisions for production optimization purposes. In other words, reservoir comprehensive models 

provide the essential framework for any type of flow analysis in the reservoir (Hovadik and 

Larue, 2011). For example, grid-based simulation (Aziz and Settari, 1979; Fanchi, 2001) and 

streamline simulation (Sayyafzadeh et al., 2010; Shook and Mitchell, 2009) are considered as the 

most accurate techniques in reservoir modeling and simulation studies. These modeling 

approaches are mostly used to predict the future behavior of the reservoirs in professional 
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simulators. The mentioned methods require large amounts of available data and high 

computational power. 

Fortunately, forecasting the dynamic behavior of the reservoir and estimating the recovery factor 

are also possible by using other faster alternatives such as considering the existing analogy with 

similar reservoirs possessing similar characteristics (Larue and Yue, 2003), applying decline 

curve method (Li and Horne, 2005), or utilizing qualitative techniques (Hovadik and Larue, 

2011; Shook and Mitchell, 2009; Tang and Liu, 2008). In addition, development of 

proxy/surrogate models with acceptable accuracy based on available production data is another 

popular solution due to less computational load (Tafti et al., 2013; Mohaghegh and Abdulla, 

2014; Aifa, 2014; van Essen et al., 2012; Sayyafzadeh et al., 2011; Ahmadloo et al., 2010; 

Elkamel, 1998; Nashawi and Elkamel, 1999). 

In the presence of inherent uncertainty in the reservoir, the outcomes from the mentioned 

modeling approaches may not be as reliable as expected. Hence, any made decision based on 

non-reliable outputs will not lead to optimal results. For example, design of any controller or 

optimizer in that situation might be totally ineffective. In other words, simulation the 

waterflooding process, while ignoring the reservoir uncertainties in the considered model may 

lead to sub-optimal or even impractical results in practice.  

In this paper, through employment of production data a novel algorithm for taking into account 

the geological uncertainties in modeling of waterflooding process in oil reservoirs has been 

developed. From system theory point of view, the introduced unstructured uncertainty modeling 

technique can centralize the uncertainty effects on each desired variable by introducing a specific 

perturbation module. Consequently, instead of prevalent method of generating multiple 

realizations to represent a hydrocarbon reservoir containing different uncertainty sources (Siraj et 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7 
 

al 2016; van Essen et al., 2009; Yasari et al., 2013), the proposed modeling procedure, can be 

utilized. A Monte-Carlo based experiment has been applied in data gathering phase to generate 

and record the required data-set. Based on the distribution and the number of the uncertain 

parameters, the data collection experiments have been designed. The set of the plausible linear 

models, a , and the nominal reservoir model, nG , have been obtained in the form of  transfer 

function/matrices by using available data, K-means clustering algorithm, and also considering 

the reservoir as a Multi-Input/Multi-Output (MIMO) system. The mentioned models represent 

the mapping between system inputs and outputs in the frequency domain around a specific 

operating point. In addition, the best perturbation module, ∆, has been estimated such that the 

cumulative nG   structure represents the reservoir dynamic behavior in the presence of 

uncertainty. The proposed modeling approach, which is an extension on (Hourfar et al., 2016), 

has been evaluated for a set of different reservoir realizations based on 10th SPE-model#2 

benchmark as a well-known case study, while assuming that the exact knowledge on the values 

of permeability parameters is uncertain. The obtained results demonstrate that the developed 

technique can effectively represent the dynamics of waterflooding process in the presence of 

geological uncertainties. This characteristic will be useful to construct the models which are 

applicable in advanced reservoir management strategies, while using robust control and 

optimization theories.  

2. Reservoir Modeling: 

Availability of a reliable model is necessary to perform an effective reservoir management. So, 

constructing appropriate models suitable for different applications is a critical task. In this part, 

two different approaches for reservoir modeling are briefly discussed.  

2.1. Mechanistic Models: 
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Generally, a hydrocarbon reservoir is modeled by PDE‟s based on mass and momentum 

conservation laws in the professional simulators (Aziz and Settari, 1979; Jansen et al., 2008). 

Mass balance for two considered phases (i.e. oil and water) in the reservoir can be described as: 
 

( ) ( ) 0; { , }i i i iu S i o w
t

 


   


,                                   (1) 

 

in which t is time,   is the divergence operator,   is the porosity, i  is the density of the 

phase i, iu   is the superficial velocity, iS   is  the saturation, defined as the proportion of the pore 

space occupied by phase i. Moreover, o and w can be used as the notations for oil and water 

phases, respectively. 

In addition, conservation of momentum can be deduced by Navier-Stokes equations. However, 

the simplified version is described by semi-empirical Darcy's equation for low velocity flow 

through porous materials as follows (discarding gravity): 

, { , },ri
i i

i

ku k p i o w


                                             (2) 

 
where ip  is the pressure of phase i , k  is the absolute permeability, rik  is the relative 

permeability and i  is the viscosity of phase i . The permeability k is an inverse measure of the 

resistance a fluid encounters flowing in a porous medium. The relative permeability rik  relates to 

the additional resistance phase i experiences when other phases are present, due to differences in 

viscosity. Since the relationship between relative permeabilities, rok  and rwk , and water 

saturation, wS , is fully non-linear, the reservoir model is a strongly nonlinear system.  
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Substituting (2) into (1) results into 2 flow equations with 4 unknowns which are op , wp , oS

and wS . Consequently, two additional equations are required for completing the system 

description. 

The first one states that the summation of phase saturations must be equal to 1: 
1o wS S  .                                                          (3) 

 
The second necessary equation is the capillary pressure equation as: 
 

( )cow o w cow wp p p f S   .                                                                                                      (4) 
In reservoir simulation, it is common to substitute (3) and (4) into the flow equations. Then, by 

considering oil pressure, op , and water saturation, wS , as primary state variables, we will 

have: 

( ) ( [1 ])o o o wp S
t

 


    


,                                                                                                                               (5) 

 

( ) ( ),cow
w o w w w w

w

pp S S
S t

  
 

    
 

                                                                                                         (6) 

 

where ro
o

o

kk


  and rw
w

w

kk


  are called oil and water mobilities. Flow equations (5) and 

(6) are defined over the entire volume of the reservoir. It is supposed there is no flow across the 

boundaries of the reservoir geometry over which (5) and (6) are defined (Neumann boundary 

conditions). 

One conventional approach in commercial simulators for solving the above equations is 

discretization in time and space. That policy results in: 

 

1 0 0( ) ( ) , ,k k k k k    V x x T x x q x x                                                                                        (7) 
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where k is the time index, x is the state vector consisting of op and wS in all grids. In addition,

0x  is a known vector which contains initial condition values. The effect of the wells on the 

dynamics of the reservoir can be modeled in (7) by a source vector named kq . 

,( )j j j j
k bh k kq w p p     ,                                                                                                                                                   (8) 

 

in which ,
j

bh kp  is the well's bottom hole pressure, j is the index of the grid block containing the 

well and j
kp is the grid block pressure in which the well is located. In addition, w is a constant 

that quantifies the well's geometric factors and also the rock and fluid properties in the vicinity of 

the well. 

2.2.  Black-Box Reservoir Modeling: 
Instead of solving the equations presented in section 2.1 for all grids in each time step, system 

theory-based modeling techniques can be utilized to model the waterflooding process in the 

framework of fast simulation approaches. This strategy helps to evade from complicated 

calculations which originate from PDE‟s handling. So, analyzing the reservoir behavior under 

certain conditions can be performed faster and with lower computational expenses. To this aim, 

an appropriate linear mapping between production and injection data in the form of transfer 

function/matrix, either in continuous or discrete space can be found, while assuming the 

reservoir as a MIMO system (Hourfar et al., 2016, 2017). In this approach, the inputs of the 

reservoir are well controls, which are generally total injection flow rates or bottom hole pressures 

(bhp) of the wells. Moreover, oil and water production rates of the producing wells are supposed 

to be the reservoir outputs (Figure1).  
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Figure 1. Schematic of oil reservoir as a Multi-Input-Multi-Output system (Hourfar et al., 2016). 

 

Using the unit delay operator, 1q  , the oil reservoir can be linearly modelled in each operating 

point as follows: 

( ) ( ) ( ) ( )A q y k B q u k ,                                          (9) 
in which y  is the p-dimensional output vector (oil, water, or total production rate of the 

producing wells), u  is the m-dimensional input vector (injection rate or bhp of the wells), and 

( )A q  and ( )B q  are polynomial matrices as: 

 
1

1( ) n
nA q I Aq A q      .             (10) 

 
1

1( ) n
nB q B q B q      .             (11) 

 

Generally, in MIMO systems (9) can be expresses as: 
 

( )y G q u ,                            (12) 
 

in which 1( ) ( ) ( )G q A q B q .
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Equivalently, by applying Laplace transform, which is normally used for continues and 

frequency domain representation, the transfer matrix of the reservoir, ( )G s  , can be obtained as: 

  

( ) ( ) ( )Y s G s U s .                                                                                                                         (13) 
 
It should be clarified that the main reason of utilizing Laplace transform in this paper and 

switching from discrete time domain to frequency domain is to construct a standard structure for 

waterflooding process, applicable in various types of robust control framework. It has been 

demonstrated in (Hourfar et al., 2016) that the presented proxy modeling methodology is capable 

to estimate the desired outputs with acceptable accuracy. However, as it is clear in (1) and (2), 

the values of internal parameters and characteristics of the reservoir such as porosity or 

permeability of each grid block generally contain different levels of inherent uncertainty. Hence, 

the outputs of proxy modeling approaches which ignore the effect of existing uncertainties may 

not be reliable for real applications. 

As a result, in this paper a fast reservoir modeling approach, suitable for waterflooding 

simulation has been developed such that the parametric uncertainties can be taken into account 

during the modeling process. In other words, the considered problem in this paper can be 

expressed as follows: 

“Introducing a valid model for waterflooding process with the following characteristics: 

a) Being able to reflect the effects of existing geological uncertainties on the production 

regime during the waterflooding process. 

b) Needless to directly challenge with complex PDE‟s of the reservoir to estimate the 

productivity condition, while proposing a data driven proxy modeling technique which is 

constructed based on available production data. 
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c) Providing a lumped structure model to represent the probable behaviors of the reservoir 

in the presence of uncertainty (instead of using a set which includes different reservoir 

realizations).  

d) Capability of being used by advanced control and optimization techniques.” 

3. Uncertainty Quantification 
 

Typically, uncertainty originates from perturbations which represent the differences between the 

constructed model and the real system. The discrepancy generally appears due to un-modeled 

dynamics, ignored nonlinearities in the modeling process, model order reduction, and lack of 

exact knowledge about parametric values. The above shortcomings have negative effects on 

controller/optimizer stability and performance during the operation (Gu et al., 2013). 

In this paper, a systematic methodology is proposed to quantify the impacts of uncertainty on 

waterflooding process. The introduced technique provides the facilities to easily model the 

dynamic behavior of waterflooding process, while internal parameters such as permeability or 

porosity have different degrees of uncertainty.  

3.1. Unstructured Uncertainty Modeling 
 
The main goal in this paper is to consider all dynamic perturbations as a single perturbation 

block, Δ, in the constructed model. This kind of uncertainty representation is known as 

“unstructured” uncertainty modeling in the literature. In linear, time-invariant (LTI) systems, the 

block Δ would be an unknown transfer function matrix. Although the unstructured uncertainty 

can be presented in various forms, additive uncertainty modeling structure is introduced in this 

section. In additive uncertainty modeling scheme of single input single output (SISO) systems, 

the relationship between the transfer function of the real perturbed system dynamic, ( )PG s , 
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and the nominal model of the physical system, ( )oG s , is as (14) in the presence of uncertainty, 

( )s : 

( ) ( ) ( )P oG s G s s  .                                                                                                        (14) 

 
If the system is MIMO, the mentioned transfer functions will change to a transfer matrix.  Figure 

2 demonstrates the general schematic of additive uncertainty modeling structure. 

 

Figure 2. Additive uncertainty configuration of an uncertain system. 
 

Generally, in additive uncertainty representation, quantifying the value of absolute error between 

the actual dynamics and the outputs of nominal model is a crucial step. Although the term ( )s  

in (14) is uncertain and its exact value is unknown, it can be bounded by a known transfer 

function, which means [ ( )] ( )j j     , for all frequencies   , where   is a known scalar 

function and [ ( )]j   is the notation for the largest singular value of the uncertainty matrix. 

Consequently, the uncertainty of the considered system can be lumped in a unit, norm-bounded 

block,  , which is followed by a scalar transfer function ( )s . For more clarification, by taking 

into account the nominal transfer function of the system as ( )oG s , the actual transfer function 

given by ( )G s , and assuming the difference between nominal and real model, ( ) ( )oG s G s , is 

stable, the model uncertainty can be represented by using a bound of the following form: 
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( ) ( ) ( )o aG j G j    ,                                                                                                          (15) 

in which a  stands for uncertainty radius at each frequency,  . 

(15) expresses that the response of actual system, ( )G s , lies in a band of uncertainty which is 

located in the vicinity of the obtained results from the nominal transfer function, ( )oG s . Since no 

phase information in error modeling is incorporated, the explained approach for uncertainty 

modeling mostly leads to conservative results. 

Based on the above description, the following uncertainty set is defined for additive uncertainty 

modeling: 

 ( ) ( ) ( ) ( ) ( )a o a aG s G s G s W s s     ,                                                                                   (16) 

where a  is an arbitrary stable transfer function which should satisfy the following norm 

condition: 

1sup ( )a a j



     .                                                                                                  (17) 

Considering inequality (18), the stable proper rational weighting term, ( )aW s , is utilized to 

demonstrate any available information about the accuracy of the nominal model. 

 
( ) ( ) ( ) ( ) ( )a a a oW j W j j G j G j          ,                                                              (18) 

 
or equivalently, 
 

( ) ( ) ( ) ( )max
a

a o a
G

W j G j G j j   


    .                                                          (19) 

Figure 3 illustrates the internal configuration of G as the actual system based on its principal 

components which are: oG , aW , and a . 
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Figure 3. Configuration of oG , aW , and a  in additive uncertainty modeling structure.  
 

It should be noted, it is necessary that the unstable poles of available models in a  are matched 

with those of the nominal model. Consequently, the utilized identification techniques should be 

able to successfully detect the unstable poles of the system. By taking into account the 

knowledge about the lower bound, ( )a j , it is possible to explore for a stable weighting 

function, ( )W s , such that: 

( ) ( )a aW j j   .                                                                                                          (20) 

In practical applications, accurate perturbation modeling is an important prerequisite to design an 

appropriate controller/optimizer in the presence of uncertainties (Grossmann et al., 2016). In 

other words, the introduced modeling structure can be considered as a basic form in well-known 

robust control approaches. By using the proposed model, challenging problem of wateflooding 

optimization can be formulated for instance as an H  controller design. That policy is a good 

alternative to evade from time-consuming common robust optimization techniques, in which the 

optimization problem should be solved for all available reservoir realizations. Figure 4 

demonstrates the closed-loop structure for utilizing the developed model in regular robust control 
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framework. In Figure 4, K stands for the controller/optimizer. In addition, w and z are considered 

as process inputs and outputs, while, y and u are controller inputs and outputs, respectively. 

 

Figure 4. General structure of utilizing developed model in robust controller/optimizer design. 

4. Methodology of Waterflooding Process Modeling in the Presence of Uncertainty
 

In this section, the proposed methodology which has been compatible to model the waterflooding 

process in the presence of uncertainty in oil reservoirs is explained in detail. The introduced 

approach is subdivided into three separate steps as:  

4.1. Initialization 

At the initial step, system inputs and outputs for modeling purposes are specified. The algorithm 

tries to find a proper mapping between inputs and outputs, based on the available data while 

taking into account the inherent reservoir uncertainties. To this aim, the reservoir parameters are 

divided into two sets: 1) certain and, 2) uncertain. The former parameters are the ones that exact 

knowledge about their values is available and the latter are those which contain some sort of 

uncertainty. 

4.2. Data Generation and Uncertainty Realization in the Reservoir Simulator 

In all data-driven modeling approaches proper input-output data collection is one of the most 

important sections for representing the dynamics of the system with high accuracy. The richer 
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the gathered data, the better the obtained model. So, in this phase it is mandatory to stimulate the 

reservoir such that most of the hidden dynamics are identified. Theoretically, Persistently 

Exciting (PE) signals are suitable candidates to be applied as system inputs. In general, white 

noise and Pseudo Random Binary Signal (PRBS) can be considered as inputs with PE 

characteristics. However, applying fully PE inputs is not a practical solution due to it is not 

recommended to regularly re-adjust the setting of control valves with high frequencies during oil 

production. So, an alternative which meets the operational constraints and also mimics PRBS 

characteristics should be utilized as the system input. Afterwards, data pre-processing should be 

done over the set of collected input/output data for numerical robustness enhancement as well as 

accelerating the convergence speed of modeling. 

To calculate the effect of uncertain parameter on the reservoir behavior- such as production 

regime- that parameter should be applied in the valid simulator. So at the first stage, the 

characteristics of uncertain parameter should be determined. An applicable expression for an 

uncertain parameter,   , is as follows: 

(100 )
100

o 



 ,                                                                                                                    (21) 

in which o  is the nominal value of the uncertain parameter and   is the percentage of 

deviation from o . Without loss of generality, in this paper it has been assumed that the 

uncertain parameter has uniform distribution or equivalently its corresponding probability 

density function (pdf) is: 

1 for
( ) ,

0 otherwise

a b
p b a





 

 



                                                                                              (22) 
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where 
100
o

ob  



   and 

100
o

oa  



  . 

By considering the dimension and the distribution of the assumed uncertainty, minimum required 

number of simulations, N, which can reflect the probable dynamic behavior of waterflooding 

process in the presence of existing uncertainty, will be specified. Needless to mention, this 

approach originates from Monte Carlo experiment methodology. N should be selected such that 

the set of obtained outputs from different experiments, appropriately represents the effect of 

considered uncertainty in the output space. It should be noted that Like other Monte-Carlo based 

techniques, increasing the number of experiments, N, leads to a better estimation of uncertain or 

stochastic process. So, it can be concluded that a larger N is equivalent with more reliable model. 

However, some factors such as available computational power, required accuracy relevant to a 

specific application, tolerable errors between the output of generated model and the real output, 

size of the considered reservoir and also the pattern of uncertain parameter distribution may 

result in different acceptable values in selecting “N”. In other words, by taking into account the 

mentioned factors, the field expert is free to choose the value of N such that the trend of obtained 

results acts as an acceptable representative for the dynamic of the system in the presence of 

considered uncertainty. So at this phase, a set of uncertain parameters with N members are 

randomly generated while all members satisfy (21) or (22). By applying proper input signal 

which can be water injection sequence, the generated ‟s are used in N different simulations. 

Meanwhile, the production data which are the system outputs (oil production, water production 

or total production of the wells) will be recorded to build the set of relevant input/output data in 

the presence of parameter   uncertainty. 

4.3. Model Development  
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In this stage, each set of input/output data, generated by the reservoir simulator at a specified 

value of uncertain parameter , is used to find an appropriate linear input/output mapping in the 

form of transfer function. This implies that the set of transfer function models represent the 

dynamic of the waterflooding process when the value of   varies according to (21). For more 

details about computation of data-driven transfer function modeling in oil reservoirs, based on 

available injection/production data and also advantages and limitations of that technique, one 

may refer to (Sayyafzadeh et al., 2011; Hourfar et al., 2016). 

4.3.1. Nominal Transfer Function Computation  

After calculating the transfer functions “ ( ) : 1,...,iG s i k ” related to all simulations and 

constructing the following set,  : 

 1 2{ ( ), ( ),..., ( )}kG s G s G s  ,                                                                                       (23) 

in which k is the number of experiments corresponding with different  ‟s, the nominal transfer 

function for waterflooding process, ( )oG s , can be easily obtained in the next step. 

Generally, the identified transfer function for the ith experiment, ( )iG s , is represented as 

follows: 
1

, 1, 0,
1

1, 0,

( )( )
( )

m m
m i m i i

i n n
n i i

b s b s bN sG s
D s s a s a









 
 

  
 .                                                                        (24) 

It is possible to factor the numerator, ( )N s , and the denominator, ( )D s , polynomials for 

expressing the transfer function as follows: 

1, 2, 1, ,

1, 2, 1, ,

( )( ) ( )( )
( )

( )( ) ( )( )
i i m i m i

i i
i i n i n i

s z s z s z s z
G s K

s p s p s p s p




   


   
 .                                                        (25) 

where ( )N s  and ( )D s  have real coefficients defined based on system‟s differential equation 

and ,i m iK b . The zi‟s are the roots of ( )N s  and are called system or transfer function zeros. 
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The pi‟s are the roots of ( )D s  and are called system or transfer function poles. Since all the 

coefficients of ( )N s  and ( )D s  are real, the poles and zeros must be either purely real, or 

appear in the format of complex conjugate pairs. 

Although some attempts have been done to quantify the uncertainty in the form of transfer 

functions in several applications (de Vries and van den Hof, 1995; Douma and van Den Hof, 

2005; Ko et al., 2008), in this paper we present an algorithm tailored to be suitable in 

waterflooding process. 

By assuming the number of zeros and poles do not change in all iG ‟s (i.e. the orders of 

nominators and denominators remain constant for all transfer functions) and also supposing that 

the presence of uncertainty does not cause any variation in the nature of stable/unstable poles or 

minimum/non-minimum phase zeros, the nominal transfer function, ( )oG s , is calculated based 

on k-means clustering algorithm (Kanungo et al., 2002). The above assumptions can be 

interpreted as: 

A1) The uncertainty does not affect the assumed structure of the system during the modeling 

process. 

 A2) The uncertainty does not change the critical behavior of the system.  

In other words, the presented algorithm can appropriately work when the above conditions are 

satisfied. For example, if the uncertainty causes any change in the number of poles or zeros, then 

a fixed structure for the transfer function cannot be assumed as the model of the process. In 

addition, if the uncertain parameter forces one or more poles(zeros) to cross over the imaginary 

axes, then k-means clustering algorithm is unable to introduce an acceptable representative for 

those poles(zeros). The reason of the mentioned inability is that there exists no pole(zero) which 

can be a valid representative for both stable and unstable poles(zeros), simultaneously. 
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At this point, the nominal transfer function of waterflooding process should be calculated such 

that it acts as an acceptable representative for all of the observed experiments. The interpretation 

of the mentioned statement is to locate poles(zeros) of ( )oG s in s-plane such that each pole(zero) 

appropriately represents the corresponding cluster of poles(zeros) of the members of set Γ. To 

this aim, k-means clustering technique is applied to properly calculate the locations of 

poles(zeros) of ( )oG s  by performing the following steps: 

- Identifying the groups of poles and zeros correctly, which can be done by assuming nK  

distinct clusters based on the order of ( )D s  for poles clustering, and mK  distinct 

clusters based on the order of ( )N s for zeros clustering. 

- Finding suitable representatives, which would be the poles and zeros of ( )oG s , 

corresponding to determined clusters. The representatives are normally chosen as the 

cluster centers, μ.  

To obtain a proper cluster center, the summation of the cluster members‟ distances- e.g. in the 

form of Euclidean distance- from the cluster center is minimized: 

2

1

K

i j
j i

L x 


   ,                                                                                                               (26) 

where ix  is assigned to cluster j and K is the number of clusters which for pole-clusters is equal 

to nK  and for zero- cluster is equal to mK . 

Equivalently, L can be expressed as follows: 

2

1 1

1 if assigned to cluster
where ,

0 else

pK

ij i j
j i

i
ij

L a x

x j
a


 

 

 
  
 


                                                                        (27) 
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and p is the number of all points (poles or zeros). 

The ultimate goal is minimizing L, based on properly choosing ija ‟s and  ‟s. In other words, by 

minimization of the value of L, the center of each cluster is determined. This task can be done 

iteratively in different steps: 

1- Initializing the values of 1 ….. k  arbitrarily. 

2- Choosing optimal ija „s for fixed  ‟s. 

3- Choosing optimal  ‟s for fixed ija . 

4-  Repeating 2 and 3 until convergence. 

Assigning ix  to the nearest j , results in the following ija ‟s: 

21 argmin

0 .
i ll

ij

if j x
a

else

   
  
  

  ,                                                                                 (28) 

and for calculating the  ‟s, the following condition should be satisfied: 

0
j
L  ;                                                                                                                                (29) 

which results in: 

1
j i

ij

x
n

   ,                                                                                                                         (30) 

where jn is the number of ix , assigned to cluster j. 

In the s-plane, the interpretation of (30) is to compute mean values for real and imaginary parts 

of pole and zero clusters.  

 

4.3.2. Weighting Transfer Function Estimation  
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As explained in section 3, system transfer function in the presence of uncertainty related to the ith 

experiment, ( )iG s , can be expressed as: 

( ) ( ) ( )i o iG s G s s   ,                                                                                                             (31) 

where ( )oG s is the nominal transfer function, and ( )i s  is the uncertainty model in the format 

of transfer function for the ith experiment and can be expressed as (32) based on (16): 

( ) ( )i s W s    .                                                                                                                       (32) 

Consequently, the dynamic of the uncertain part is presented by ( )W s  and norm of   is 

considered to be no more than 1, which means 1  . 

As a result, the following inequality should be satisfied in all frequencies: 

, : ( ) ( ) ( ) ( ) ( ) ( ) ( )i i o o oG s G s G s W s G s W s G s W s          .              (33) 

It should be noted that the system norm or transfer function norm, G , which is equivalent to 

maximum system gain, is defined as: 

0
: Y

u U

Gu
G Sup

u

 .                                                                                                                    (34) 

in which G  is a transfer function for a linear and bounded system that maps the input signal, 

( )u t , to the output signal, ( )y t , and ( , . ), ( , . )
U Y

u U y Y  . U and Y  are the signal 

spaces with the specified norms .
U

 and .
Y

, respectively. 

To determine ( )W s  based on the above explanations, it is necessary to plot Bode magnitude 

diagram of the error frequency responses, ( )iE j ‟s, for all available iG ‟s in different 

frequencies,  . 
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( ) ( ) ( )i i oE j G j G j    .                                                                                                  (35) 

Afterwards, ( )W s , should be designed and shaped with minimum possible order such that it 

acts as an envelope over the iE ‟s in all frequencies.  

The flowchart of this methodology is illustrated in Figure 5. 

 
Figure 5. Flowchart of the presented methodology. 

5. Algorithm Implementation and Results 

The developed algorithm has been implemented in Matlab Reservoir Simulation Toolbox 

(MRST) environment (Lie, 2014). Using MRST provides the capability of controlling and 

optimizing the reservoir production by properly adjustment of the manipulated variables which 
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are normally selected as well flowrate or bhp. It should be clarified here that in “well control 

section” of the simulator, the initial values of bhp‟s dedicated to the producing wells are all 

specified. Then, by continuously adjusting the water flow rate of injection wells, the defined 

outputs are recorded. The outputs of the system which are going to be modeled in the presence of 

uncertainty are generally supposed to be oil and water production rates of producing wells. 

Furthermore, in order to prevent from over-pressurization in the reservoir, the following equality 

constraint is always satisfied: 

_ _
1 1

pm

i inj j prod
i j

q q
 

  ,                                               (36)  

where _i injq  is the flowrate of each injection well, _j prodq  is the total flowrate of each 

producing well, m is the number of injection wells and p is the number of production wells. 

After initialization and adjustment of the required parameters, variables such as total production 

rate, oil production rate, water production rate and water cut of all producing wells are computed 

at each time-step by the simulator. Due to the existing correlation in the generated outputs, 

modeling just two variables from the mentioned list is sufficient to estimate the others. Hence, in 

this section it is enough to demonstrate the modeling results of “total production” and “oil 

production” of producing wells. 

The proposed algorithm is applied to the well-known 10th SPE-Model#2 for waterflooding 

process modeling, including induced geological uncertainty. So, a Single Input, Multi Output 

(SIMO) model (one injection well and four production wells) is constructed. The porosity and 

permeability maps for 10th SPE-Model#2 as well as other parameters such as well locations in 

Cartesian coordinate and initial adjustments are available in (Christie and M. J. Blunt, 2001; 

Islam and Sepehrnoori, 2013). 
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An appropriate injection sequence for the period of 2000 days of operation, which satisfies the 

practical constraints and also has the most analogy with PE signals, has been applied to the 

reservoir (Sequence of injection rate is available in electronic supplementary material).  

We have assumed that the water injection rate can switch to a new value in the interval of 

[3000bbls/day-6000bbls/day] just once in 100 days. In addition, the inputs and outputs of the 

system are recorded every 10-days due to the slow dynamic of the reservoir. So, the 

corresponding sampling time, sT , is 864000s.  

Furthermore, for modeling and estimation of the uncertainty influences on the production 

regime, we supposed that our knowledge about the exact value of the permeability-as a sample 

for the source of geological uncertainty- is not precise. In other words, the permeability of each 

grid in the simulator may deviate up to 10% from its nominal value according to (21). 

The obtained results demonstrate that the developed modeling technique is capable to introduce a 

lumped model structure, applicable in analyzing the effects of induced geological uncertainty on 

waterflooding process with good accuracy. 

Figure 6, shows the general configuration of the constructed model for mimicking the 

waterflooding process in the studied example. Clearly, the system input (injected water) can 

affect the defined outputs (total production rates and oil production rates of four producing wells) 

thorough the nominal and uncertainty transfer functions. Table 1 and 2 contain the computed 

values of the transfer functions, related to oil production rates and total production rates, 

respectively. 
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Figure 6. General configuration of systematic uncertainty modeling for waterflooding process 
from injection well to producing wells (well#1 to well#4) in 10th SPE10-Model#2. a) TnG ’s and 

TnW ’s are related to total production rates, b) OnG ’s and OnW ’s are related to oil production 
rates. 
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Table 1. Calculated nominal and weighting transfer functions from injection well to all 
producing wells for “oil production rate” modeling. 

Well 
no.  

Nominal Transfer Functions Weighting Transfer Functions 

#1 2 1

3 2 1
(2.52 8) (1.128 14) (1.026 22)( )

(5.04 7) (2.797 13) (4.121 21)n
e s e s eG s

s e s e s e
    


     

 
3 2 1

3 2 1
(6.387 5) (1.295 7) (3.24 13) (1.253 19)( )

(4.661 6) (5.359 12) (2.511 18)
e s e s e s eW s

s e s e s e
      


     

 

#2 2 1

3 2 1
(1.94 7) (1.374 14) (2.296 22)( )

(2.242 6) (2.36 13) (5.219 21)n
e s e s eG s

s e s e s e
    


     

 
3 2 1

3 2 1
(6.155 5) (1.149 7) (1.331 12) (1.978 18)( )

(1.415 5) (4.664 11) (6.152 17)
e s e s e s eW s

s e s e s e
      


     

 

#3 2 1

3 2 1
(3.16 7) (3.173 14) (4.45 22)( )
(2.523 6) (3.333 13) (7.613 21)n

e s e s eG s
s e s e s e

    


     
 

3 2 1

3 2 1
(0.0003097) (2.441 7) (4.606 13) (5.628 20)( )

(4.02 6) (6.241 12) (1.049 18)
s e s e s eW s

s e s e s e
     


     

 

#4 2 1

3 2 1
(8.72 8) (1.161 14) (1.529 22)( )

(1.057 6) (1.588 13) (3.334 21)n
e s e s eG s

s e s e s e
    


     

 
1

1
(6.872 5) (1.048 7)( )

(2.411 6)
e s eW s
s e
  


 

 

Table 2. Calculated nominal and weighting transfer functions from injection well to all 
producing wells for “total production rate” modeling. 

Well 
no. 

Nominal Transfer Functions Weighting Transfer Functions 

#1 2 1

3 2 1
(6.001 8) (2.236 14) (5.013 22)( )

(6.919 7) (2.596 13) (5.582 21)n
e s e s eG s

s e s e s e
    


     

 
2 1

2 1
(0.0001884) (4.653 8) (4.877 14)( )

(1.061 6) (9.439 13)
s e s eW s

s e s e
   


   

 

#2 2 1

3 2 1
(2.051 7) (1.592 14) (6.48 22)( )

(1.201 6) (1.192 13) (3.638 21)n
e s e s eG s

s e s e s e
    


     

 
1

1
(0.001543) (2.895 7)( )

(2.563 6)
s eW s

s e
 


 

 

#3 2 1

3 2 1
(2.83 7) (3.615 14) (7.074 22)( )

(6.096 7) (1.02 13) (1.325 21)n
e s e s eG s

s e s e s e
    


     

 
1

1
(0.00268) (5.906 7)( )

(2.146 6)
s eW s

s e
 


 

 

#4 2 1

3 2 1
(2.74 7) (7.883 14) (1.607 22)( )

(1.239 6) (3.908 13) (6.187 22)n
e s e s eG s

s e s e s e
    


     

 
1

1
(0.0003729) (3.521 7)( )

(5.817 7)
s eW s

s e
 


 

 

 

For more clear and distinguishable illustration, just the results for 30 random simulations 

regarding the different uncertain permeability values have been depicted. The following figures 

demonstrate the outcomes related to each step for one of the considered outputs (oil production 

of well#3), for the sake of brevity.  
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Figure 7 shows the water injection profile in the reservoir (system input) which is selected to 

have pseudo-PE characteristics, while considering the practical constraints on set-point variation 

frequency.  

 

Figure 7. Water injection profile in the reservoir (system input). 

 Figure 8 illustrates oil production rate of well#3 (as the selected output) in 30 different 

permeability scenarios, corresponding with simulating the real conditions and the estimated TF 

models‟ outputs related to each experiment. The TF models are computed in frequency domain 

such that they provide the best linear approximations around the operating point for all studied 

scenarios. Despite the nonlinear nature of the reservoir dynamic, the obtained results show that 

the calculated TF‟s are successful in modeling the output deviations- which are due to the 

existence of the uncertain parameter- with acceptable accuracy, around the operating point. 
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Figure 8. Comparison of simulator outputs and TF models outputs (Considering oil production of 
well #3 as the modeled output).  

By applying the explained technique in section 4.3.1 and also using k-means clustering 

algorithm, the nominal model of the process has been created, while taking into account the 

calculated transfer functions relevant to all studied scenarios (Table 1). Figures 9 and 10 

demonstrate Bode magnitude plots and the time responses of the nominal transfer function as 

well as the estimated transfer functions, regarding the different permeability scenarios, 

respectively. It can be observed that the nominal model has sufficient ability to act as a good 

representative for the set of estimated transfer functions. 
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Figure 9. Bode magnitude diagrams of nominal TF and estimated TF‟s, based on different 
permeability scenarios (Considering oil production of well #3 as the modeled output). 

 
 

 

Figure 10. Time-domain response of the nominal TF and estimated TF‟s, based on different 
permeability scenarios (Considering oil production of well #3 as the modeled output). 

 

After generating a suitable nominal transfer function, it is time to compute an appropriate 

weighting transfer function, ( )W s , by applying the described technique in section 4.3.2. Figure 

11, demonstrates the differences between the nominal model and the TF‟s relevant to each 

experiment in frequency domain in the format of Bode magnitude diagram. By observing the 
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presented results in Figures 12, 13 and 14, it can be perceived the 3rd-order ( )W s  (available in 

Table 1) is a better option to provide an acceptable envelope over the difference curves of Figure 

11, in comparison with the lower orders. As it can be seen in Figure 12, the proposed 1st-order 

( )W s  is not a suitable envelope, since it has several points of intersection with the difference 

curves. In addition, by comparing 2nd-order and 3rd-order options for ( )W s , it can be found out 

that the existing gap between the proposed envelope and the difference curves for 3rd-order 

( )W s  is less than 2nd-order alternative. So, selecting 3rd-order ( )W s  leads to a less 

conservative uncertainty model. Further analysis demonstrates that higher orders of weighting 

transfer functions (4th-order, 5th order and etc.) have no significant privilege over the chosen 3rd-

order ( )W s . 

 

Figure 11. Bode magnitude plot of the differences between the nominal TF and estimated TF‟s 
related to different experiments (Considering oil production of well #3 as the modeled output). 
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Figure 12. 1st order ( )W s  estimation (Considering oil production of well #3 as the modeled 
output). Blue curve is the 1st order envelope over the models‟ errors (red curves). 

 

Figure 13. 2nd order ( )W s  estimation (Considering oil production of well #3 as the modeled 
output). Blue curve is the 2nd order envelope over the models‟ errors (red curves). 
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Figure 14. 3rd order ( )W s  estimation (Considering oil production of well #3 as the modeled 
output). Blue curve is the 3rd order envelope over the models‟ errors (red curves). 

 

To evaluate the capability of the developed modelling algorithm in reflecting the dynamic of 

waterflooding process in the presence of considered uncertainty, both frequency domain and 

time domain tests have been performed, while using random values for   which satisfy the 

condition: 1  . 

By setting 1   , which can be interpreted as the worst case for the considered uncertainty, it 

is obvious in Figure 15 that the summation of Bode magnitude diagram of the nominal transfer 

function and ( )W s , constructs an envelope over all probable and uncertain cases ( 1  ), 

including the simulated experiments. This fact, is also supported by time-domain evaluation of 

the results as demonstrated in Figure 16. The constructed model with nG   structure is able to 

introduce a comprehensive set which its members are plausible dynamic representatives of oil 

production rate from well#3, while the values of permeability map are not precisely known.  It 

can be seen in Figure 16 that in the presence of defined uncertainty, the probable temporal 

behaviors of the considered output are in a band which has been specified by upper and lower 
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bounds of the proposed model for waterflooding process. This information is very useful for the 

field experts in practical applications. Because, they can get a general view about the dynamics 

of the designed waterflooding process and adjust their financial expectations from the reservoir, 

while the available data has certain degree of uncertainty.  

 

Figure 15. Samples of frequency-domain plausible scenarios (Considering oil production of well 
#3 as the modeled output). 

 

Figure 16. Samples of time-domain plausible scenarios (Considering oil production of well #3 as 
the modeled output). 

6. Conclusion 
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The estimated recovery factor of hydrocarbon reservoirs can be drastically affected by 

unconsidered geological uncertainties. For design and implementation of efficient enhanced 

recovery techniques, development of valid and reliable models, which are capable to take into 

account the inherent reservoir uncertainty, is inevitable. These models facilitate study and 

evaluation of the reservoir behavior under different operational strategies. In addition, they can 

be used to make optimal decisions in the presence of different types of uncertainty. 

In this paper, a novel methodology for modeling and quantifying the geological uncertainty 

impacts on waterflooding process has been developed. While a common challenging and time-

consuming approach for uncertainty analysis in the reservoirs is to generate a set of different 

realizations, the introduced algorithm proposes a well-defined lumped configuration. The 

constructed model consists of nominal and uncertain parts in the form of transfer functions in 

frequency domain. From the system theory point of view, the nominal block is the best linear 

estimation of waterflooding process. Moreover, the uncertain block is a conservative 

approximation of the uncertainty impacts on the process. 

In data gathering phase, Monte-Carlo-based experiments are designed in random values of 

uncertain parameters for sufficient data collection, to properly reflect the effects of uncertainty 

on the desired outputs. For each set of gathered input/output data, the most appropriate linear 

mapping in the form of transfer function is calculated. The nominal and uncertain parts of the 

model are obtained by using K-means clustering technique and also frequency analysis of Bode 

magnitude plot. 

The observed results on 10th SPE-model#2 benchmark case study, have demonstrated that the 

presented algorithm has the ability to successfully model the waterflooding process dynamic, 

while the knowledge on the values of permeability is not exact. Analyzing time-domain 
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responses of the developed model for various  ‟s, introduces upper and lower bounds of the 

desired outputs in the presence of induced uncertainty. This information is valuable for the field 

experts in practice; since they will be able to make optimal and efficient decisions about the 

future production plans. 

Another advantage of the presented modeling approach is to provide suitable models, applicable 

in robust control and optimization of the reservoirs. In other words, availability of such a 

comprehensive and lumped model provides the facilities to apply well-proven robust control 

theories, for appropriately adjustment of the desired reservoir output(s) while satisfying the 

optimization objectives in the presence of geological uncertainties. In addition, in prevalent 

robust optimization techniques applicable in oil reservoirs, the optimization problem is needed to 

be solved for all available realizations. However, the output of the presented modeling 

methodology- which is a lumped completely informative model- may be effectively used just for 

once by suitable optimization algorithms. Consequently, the optimal solutions can be achieved 

with much less computational load, compared to conventional robust optimization approaches. 

So, we can summarize that in this paper a lumped but reliable model has been introduced based 

on data driven proxy reservoir modeling technique, to appropriately estimate the uncertainty 

impacts on production regime in hydrocarbon reservoirs during the waterflooding process. This 

approach helps the decision-makers to design the most effective production plans with less 

computational expenses and in a shorter time compared to ordinary uncertainty modeling 

approaches. In addition, the proposed structure is the main pre-requisite for applying any 

advanced and efficient robust control approach over the waterflooding process.   
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