37 research outputs found

    Contribution of Microbe-Mediated Processes in Nitrogen Cycle to Attain Environmental Equilibrium

    Get PDF
    Nitrogen (N), the most important element, is required by all living organisms for the synthesis of complex organic molecules like amino acids, proteins, lipids etc. Nitrogen cycle is considered to be the most complex yet arguably important cycle next to carbon cycle. Nitrogen cycle includes oxic and anoxic reactions like organic N mineralization, ammonia assimilation, nitrification denitrification, anaerobic ammonium oxidation (anammox), dissimilatory nitrate reduction to ammonium (DNRA), comammox, codenitrification etc. Nitrogen cycling is one of the most crucial processes required for the recycling of essential chemical requirements on the planet. Soil microorganisms not only improve N-cycle balance but also pave the way for sustainable agricultural practices, leading to improved soil properties and crop productivity as most plants are opportunistic in the uptake of soluble or available forms of N from soil. Microbial N transformations are influenced by plants to improve their nutrition and vice versa. Diverse microorganisms, versatile metabolic activities, and varied biotic and abiotic conditions may result in the shift in the equilibrium state of different N-cycling processes. This chapter is an overview of the mechanisms and genes involved in the diverse microorganisms associated in the operation of nitrogen cycle and the roles of such microorganisms in different agroecosystems

    Wirkung von Haustieren

    No full text

    Boys

    No full text
    Adelaide Festival of Ideas session, Bonython Hall, 12:30pm, Friday 8 July, 2005. Chaired by Phillip Adams.http://adelaidefestivalofideas.com.a

    Artificial intelligence in vascular surgical decision making

    No full text
    International audienceDespite advances in prevention, detection, and treatment, cardiovascular disease is a leading cause of mortality and represents a major health problem worldwide. Artificial intelligence and machine learning have brought new insights to the management of vascular diseases by allowing analysis of huge and complex datasets and by offering new techniques to develop advanced imaging analysis. Artificial intelligence–based applications have the potential to improve prognostic evaluation and evidence-based decision making and contribute to vascular therapeutic decision making. In this scoping review, we provide an overview on how artificial intelligence could help in vascular surgical clinical decision making, highlighting potential benefits, current limitations, and future challenges

    Modeling of Regionalized Emissions (MoRE) into Water Bodies: An Open-Source River Basin Management System

    Get PDF
    An accurate budget of substance emissions is fundamental for protecting freshwater resources. In this context, the European Union asks all member states to report an emission inventory of substances for river basins. The river basin management system MoRE (Modeling of Regionalized Emissions) was developed as a flexible open-source instrument which is able to model pathway-specific emissions and river loads on a catchment scale. As the reporting tool for the Federal Republic of Germany, MoRE is used to model annual emissions of nutrients, heavy metals, micropollutants like polycyclic aromatic hydrocarbons (PAH), Bis(2-ethylhexyl)phthalate (DEHP), and certain pharmaceuticals. Observed loads at gauging stations are used to validate the calculated emissions. In addition to its balancing capabilities, MoRE can consider different variants of input data and quantification approaches, in order to improve the robustness of different modeling approaches and to evaluate the quality of different input data. No programming skills are required to set up and run the model. Due to its flexible modeling base, the effect of reduction measures can be assessed. Within strategic planning processes, this is relevant for the allocation of investments or the implementation of specific measures to reduce the overall pollutant emissions into surface water bodies and therefore to meet the requirements of water policy.German Environment Agency (UBA

    Microbial Respiration and Formate Oxidation as Metabolic Signatures of Inflammation-Associated Dysbiosis

    No full text
    Intestinal inflammation is frequently associated with an alteration of the gut microbiota, termed dysbiosis, which is characterized by a reduced abundance of obligate anaerobic bacteria and an expansion of facultative Proteobacteria such as commensal E. coli. The mechanisms enabling the outgrowth of Proteobacteria during inflammation are incompletely understood. Metagenomic sequencing revealed bacterial formate oxidation and aerobic respiration to be overrepresented metabolic pathways in a chemically induced murine model of colitis. Dysbiosis was accompanied by increased formate levels in the gut lumen. Formate was of microbial origin since no formate was detected in germ-free mice. Complementary studies using commensal E. coli strains as model organisms indicated that formate dehydrogenase and terminal oxidase genes provided a fitness advantage in murine models of colitis. In vivo, formate served as electron donor in conjunction with oxygen as the terminal electron acceptor. This work identifies bacterial formate oxidation and oxygen respiration as metabolic signatures for inflammation-associated dysbiosis
    corecore