1,768 research outputs found
transition form factor within Light Front Quark Model
We study the transition form factor of as a
function of the momentum transfer within the light-front quark model
(LFQM). We compare our result with the experimental data by BaBar as well as
other calculations based on the LFQM in the literature. We show that our
predicted form factor fits well with the experimental data, particularly those
at the large region.Comment: 11 pages, 4 figures, accepted for publication in PR
The Composition of the Master Schedule
Over a period of about four months, the IVS Coordinating Center (IVSCC) each year composes the Master Schedule for the IVS observing program of the next calendar year. The process begins in early July when the IVSCC contacts the IVS Network Stations to request information about available station time as well as holiday and maintenance schedules for the upcoming year. Going through various planning stages and a review process with the IVS Observing Program Committee (OPC), the final version of the Master Schedule is posted by early November. We describe the general steps of the composition and illustrate them with the example of the planning for the Master Schedule of the 2010 observing year
Complete Nondiagonal Reflection Matrices of RSOS/SOS and Hard Hexagon Models
In this paper we compute the most general nondiagonal reflection matrices of
the RSOS/SOS models and hard hexagon model using the boundary Yang-Baxter
equations. We find new one-parameter family of reflection matrices for the RSOS
model in addition to the previous result without any parameter. We also find
three classes of reflection matrices for the SOS model, which has one or two
parameters. For the hard hexagon model which can be mapped to RSOS(5) model by
folding four RSOS heights into two, the solutions can be obtained similarly
with a main difference in the boundary unitarity conditions. Due to this, the
reflection matrices can have two free parameters. We show that these extra
terms can be identified with the `decorated' solutions. We also generalize the
hard hexagon model by `folding' the RSOS heights of the general RSOS(p) model
and show that they satisfy the integrability conditions such as the Yang-
Baxter and boundary Yang-Baxter equations. These models can be solved using the
results for the RSOS models.Comment: 18pages,Late
The Resolved Asteroid Program - Size, shape, and pole of (52) Europa
With the adaptive optics (AO) system on the 10 m Keck-II telescope, we
acquired a high quality set of 84 images at 14 epochs of asteroid (52) Europa
on 2005 January 20. The epochs covered its rotation period and, by following
its changing shape and orientation on the plane of sky, we obtained its
triaxial ellipsoid dimensions and spin pole location. An independent
determination from images at three epochs obtained in 2007 is in good agreement
with these results. By combining these two data sets, along with a single epoch
data set obtained in 2003, we have derived a global fit for (52) Europa of
diameters (379x330x249) +/- (16x8x10) km, yielding a volume-equivalent
spherical-diameter of 315 +/- 7 km, and a rotational pole within 7 deg of [RA;
Dec] = [257,+12] in an Equatorial J2000 reference frame (ECJ2000: 255,+35).
Using the average of all mass determinations available forEuropa, we derive a
density of 1.5 +/- 0.4, typical of C-type asteroids. Comparing our images with
the shape model of Michalowski et al. (A&A 416, 2004), derived from optical
lightcurves, illustrates excellent agreement, although several edge features
visible in the images are not rendered by the model. We therefore derived a
complete 3-D description of Europa's shape using the KOALA algorithm by
combining our imaging epochs with 4 stellar occultations and 49 lightcurves. We
use this 3-D shape model to assess these departures from ellipsoidal shape.
Flat facets (possible giant craters) appear to be less distinct on (52) Europa
than on other C-types that have been imaged in detail. We show that fewer giant
craters, or smaller craters, is consistent with its expected impact history.
Overall, asteroid (52) Europa is still well modeled as a smooth triaxial
ellipsoid with dimensions constrained by observations obtained over several
apparitions.Comment: Accepted for publication in Icaru
A Rule-Based Approach to Analyzing Database Schema Objects with Datalog
Database schema elements such as tables, views, triggers and functions are
typically defined with many interrelationships. In order to support database
users in understanding a given schema, a rule-based approach for analyzing the
respective dependencies is proposed using Datalog expressions. We show that
many interesting properties of schema elements can be systematically determined
this way. The expressiveness of the proposed analysis is exemplarily shown with
the problem of computing induced functional dependencies for derived relations.
The propagation of functional dependencies plays an important role in data
integration and query optimization but represents an undecidable problem in
general. And yet, our rule-based analysis covers all relational operators as
well as linear recursive expressions in a systematic way showing the depth of
analysis possible by our proposal. The analysis of functional dependencies is
well-integrated in a uniform approach to analyzing dependencies between schema
elements in general.Comment: Pre-proceedings paper presented at the 27th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur,
Belgium, 10-12 October 2017 (arXiv:1708.07854
Curve counting via stable pairs in the derived category
For a nonsingular projective 3-fold , we define integer invariants
virtually enumerating pairs where is an embedded curve and
is a divisor. A virtual class is constructed on the associated
moduli space by viewing a pair as an object in the derived category of . The
resulting invariants are conjecturally equivalent, after universal
transformations, to both the Gromov-Witten and DT theories of . For
Calabi-Yau 3-folds, the latter equivalence should be viewed as a wall-crossing
formula in the derived category.
Several calculations of the new invariants are carried out. In the Fano case,
the local contributions of nonsingular embedded curves are found. In the local
toric Calabi-Yau case, a completely new form of the topological vertex is
described.
The virtual enumeration of pairs is closely related to the geometry
underlying the BPS state counts of Gopakumar and Vafa. We prove that our
integrality predictions for Gromov-Witten invariants agree with the BPS
integrality. Conversely, the BPS geometry imposes strong conditions on the
enumeration of pairs.Comment: Corrected typos and duality error in Proposition 4.6. 47 page
Holomorphic anomaly equations and the Igusa cusp form conjecture
Let be a K3 surface and let be an elliptic curve. We solve the
reduced Gromov-Witten theory of the Calabi-Yau threefold for all
curve classes which are primitive in the K3 factor. In particular, we deduce
the Igusa cusp form conjecture.
The proof relies on new results in the Gromov-Witten theory of elliptic
curves and K3 surfaces. We show the generating series of Gromov-Witten classes
of an elliptic curve are cycle-valued quasimodular forms and satisfy a
holomorphic anomaly equation. The quasimodularity generalizes a result by
Okounkov and Pandharipande, and the holomorphic anomaly equation proves a
conjecture of Milanov, Ruan and Shen. We further conjecture quasimodularity and
holomorphic anomaly equations for the cycle-valued Gromov-Witten theory of
every elliptic fibration with section. The conjecture generalizes the
holomorphic anomaly equations for ellliptic Calabi-Yau threefolds predicted by
Bershadsky, Cecotti, Ooguri, and Vafa. We show a modified conjecture holds
numerically for the reduced Gromov-Witten theory of K3 surfaces in primitive
classes.Comment: 68 page
Photon-meson transition form factors of light pseudoscalar mesons
The photon-meson transition form factors of light pseudoscalar mesons , , and are systematically calculated in a
light-cone framework, which is applicable as a light-cone quark model at low
and is also physically in accordance with the light-cone pQCD approach
at large . The calculated results agree with the available experimental
data at high energy scale. We also predict the low behaviors of the
photon-meson transition form factors of , and , which are measurable in process via Primakoff
effect at JLab and DESY.Comment: 22 Latex pages, 7 figures, Version to appear in PR
The Boundary Conformal Field Theories of the 2D Ising critical points
We present a new method to identify the Boundary Conformal Field Theories
(BCFTs) describing the critical points of the Ising model on the strip. It
consists in measuring the low-lying excitation energies spectra of its quantum
spin chain for different boundary conditions and then to compare them with
those of the different boundary conformal field theories of the
minimal model.Comment: 7 pages, no figures. Talk given at the XXth International Conference
on Integrable Systems and Quantum Symmetries (ISQS-20). Prague, June 201
L-band (3.5 micron) IR-excess in massive star formation, II. RCW 57/NGC 3576
We present a JHKL survey of the massive star forming region RCW 57 (NGC 3576)
based on L-band data at 3.5 micron taken with SPIREX (South Pole Infrared
Explorer), and 2MASS JHK data at 1.25-2.2 micron. This is the second of two
papers, the first one concerning a similar JHKL survey of 30 Doradus.
Colour-colour and colour-magnitude diagrams are used to detect sources with
infrared excess. This excess emission is interpreted as coming from
circumstellar disks, and hence gives the cluster disk fraction (CDF). Based on
the CDF and the age of RCW 57, it is possible to draw conclusions on the
formation and early evolution of massive stars. The infrared excess is detected
by comparing the locations of sources in JHKL colour-colour and L vs. (K-L)
colour-magnitude diagrams to the reddening band due to interstellar extinction.
A total of 251 sources were detected. More than 50% of the 209 sources included
in the diagrams have an infrared excess. Comparison with other JHKL surveys,
including the results on 30 Doradus from the first paper, support a very high
initial disk fraction (>80%) even for massive stars, although there is an
indication of a possible faster evolution of circumstellar disks around high
mass stars. 33 sources only found in the L-band indicate the presence of
heavily embedded, massive Class I protostars. We also report the detection of
diffuse PAHs emission throughout the RCW 57 region.Comment: 15 pages, 13 figure
- …
