19 research outputs found

    An Efficient Brome mosaic virus-Based Gene Silencing Protocol for Hexaploid Wheat (Triticum aestivum L.)

    Get PDF
    Virus-induced gene silencing (VIGS) is a rapid and powerful method to evaluate gene function, especially for species like hexaploid wheat that have large, redundant genomes and are difficult and time-consuming to transform. The Brome mosaic virus (BMV)-based VIGS vector is widely used in monocotyledonous species but not wheat. Here we report the establishment of a simple and effective VIGS procedure in bread wheat using BMVCP5, the most recently improved BMV silencing vector, and wheat genes PHYTOENE DESATURASE (TaPDS) and PHOSPHATE2 (TaPHO2) as targets. Time-course experiments revealed that smaller inserts (~100 nucleotides, nt) were more stable in BMVCP5 and conferred higher silencing efficiency and longer silencing duration, compared with larger inserts. When using a 100-nt insert and a novel coleoptile inoculation method, BMVCP5 induced extensive silencing of TaPDS transcript and a visible bleaching phenotype in the 2nd to 5th systemically-infected leaves from nine to at least 28 days post inoculation (dpi). For TaPHO2, the ability of BMVCP5 to simultaneously silence all three homoeologs was demonstrated. To investigate the feasibility of BMV VIGS in wheat roots, ectopically expressed enhanced GREEN FLUORESCENT PROTEIN (eGFP) in a transgenic wheat line was targeted for silencing. Silencing of eGFP fluorescence was observed in both the maturation and elongation zones of roots. BMVCP5 mediated significant silencing of eGFP and TaPHO2 mRNA expression in roots at 14 and 21 dpi, and TaPHO2 silencing led to the doubling of inorganic phosphate concentration in the 2nd through 4th systemic leaves. All 54 wheat cultivars screened were susceptible to BMV infection. BMVCP5-mediated TaPDS silencing resulted in the expected bleaching phenotype in all eight cultivars examined, and decreased TaPDS transcript was detected in all three cultivars examined. This BMVCP5 VIGS technology may serve as a rapid and effective functional genomics tool for high-throughput gene function studies in aerial and root tissues and in many wheat cultivars

    Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica

    Get PDF
    The mutualistic basidiomycete Piriformospora indica colonizes roots of mono- and dicotyledonous plants, and thereby improves plant health and yield. Given the capability of P. indica to colonize a broad range of hosts, it must be anticipated that the fungus has evolved efficient strategies to overcome plant immunity and to establish a proper environment for nutrient acquisition and reproduction. Global gene expression studies in barley identified various ethylene synthesis and signaling components that were differentially regulated in P. indica-colonized roots. Based on these findings we examined the impact of ethylene in the symbiotic association. The data presented here suggest that P. indica induces ethylene synthesis in barley and Arabidopsis roots during colonization. Moreover, impaired ethylene signaling resulted in reduced root colonization, Arabidopsis mutants exhibiting constitutive ethylene signaling, -synthesis or ethylene-related defense were hyper-susceptible to P. indica. Our data suggest that ethylene signaling is required for symbiotic root colonization by P. indica

    Ethylene in mutualistic symbioses

    No full text
    Ethylene (ET) is a gaseous phytohormone that participates in various plant physiological processes and essentially contributes to plant immunity. ET conducts its functions by regulating the expression of ET-responsive genes or in crosstalk with other hormones. Several recent studies have shown the significance of ET in the establishment and development of plant-microbe interactions. Therefore, it is not surprising that pathogens and mutualistic symbionts target ET synthesis or signaling to colonize plants. This review introduces the significance of ET metabolism in plant-microbe interactions, with an emphasis on its role in mutualistic symbioses

    Ethylene in mutualistic symbioses

    No full text

    Root cell death and systemic effects of Piriformospora indica : a study on mutualism

    No full text
    The root systems of most terrestrial plants are confronted with a huge variety of invasive microorganisms that either can cause detrimental effects or in case of mutualistic symbiosis provide benefits for the host. In either case, establishment of the parasitic or mutualistic interaction is the result of a highly sophisticated cross-talk between the partners. Despite the ecological importance of mutualistic symbioses, the molecular events accompanied by this phenomenon are far from being understood. Piriformospora indica represents a recently discovered fungus that transfers considerable beneficial impact to its host plants. In this review, the current knowledge on this novel symbiosis is summarized by focusing on its biological effects in hosts and the role of programmed cell death in the establishment of the mutualistic interaction

    High-resolution identification and abundance profiling of cassava (Manihot esculenta Crantz) microRNAs.

    Get PDF
    BACKGROUND: Small RNAs (sRNAs) are endogenous sRNAs that play regulatory roles in plant growth, development, and biotic and abiotic stress responses. In plants, one subset of sRNAs, microRNAs (miRNAs) exhibit tissue-differential expression and regulate gene expression mainly through direct cleavage of mRNA or indirectly via production of secondary phased siRNAs (phasiRNAs) that silence cognate target transcripts in trans. RESULTS: Here, we have identified cassava (Manihot esculenta Crantz) miRNAs using high resolution sequencing of sRNA libraries from leaf, stem, callus, male and female flower tissues. To analyze the data, we built a cassava genome database and, via sequence analysis and secondary structure prediction, 38 miRNAs not previously reported in cassava were identified. These new cassava miRNAs included two miRNAs not previously been reported in any plant species. The miRNAs exhibited tissue-differential accumulation as confirmed by quantitative RT-PCR and Northern blot analysis, largely reflecting levels observed in sequencing data. Some of the miRNAs identified were predicted to trigger production of secondary phased siRNAs (phasiRNAs) from 80 PHAS loci. CONCLUSIONS: Cassava is a woody perennial shrub, grown principally for its starch-rich storage roots, which are rich in calories. In this study, new miRNAs were identified and their expression was validated using qRT-PCR of RNA from five different tissues. The data obtained expand the list of annotated miRNAs and provide additional new resources for cassava improvement research

    Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley

    No full text
    Piriformospora indica is a mutualistic root endophytic fungus, which transfers several benefits to hosts including enhance plant growth and increase yield under both normal and stress conditions. It has been shown that P. indica root-colonization enhances water stress tolerance based on general and non-specific plant-species mechanism. To better understand the molecular mechanism of P. indica-mediated drought stress tolerance, we designed a set of comparative experiments to study the impact of P. indica on barely plants cultivar "Golden Promise" grown under different drought levels [Filed capacity (F.C.) and 25% F.C.]. P. indica enhanced root and shoot biomass of colonized plants under both well-watered and water-deficit conditions. Proteome analysis of P. indica-colonized barley leaves under well-treated and water-deficit conditions resulted in detection of 726 reproducibly protein spots. Mass spectrometry analysis resulted in the identification of 45 differentially accumulated proteins involved in photosynthesis, reactive oxygen scavenging, metabolisms, signal transduction, and plant defense responses. Interestingly, P. indica increased the level of proteins involved in photosynthesis, antioxidative defense system and energy transport. We propose that P. indica-mediated drought stress tolerance in barely is through photosynthesis stimulation, energy releasing and enhanced antioxidative capacity in colonized plants. Biological significance: Plant mutualistic symbionts offer long-term abiotic stress tolerance through the host adaptation to environmental stress. There have been a few published proteomic studies of plant symbionts to drought, and this is thought to be the first proteomic analysis, demonstrating the impact of endophyte on barley plant under drought stress. For some of identified proteins like TCTP and PCNA, a connection to physiological function in plants is novel, and can be the best candidates for sources of drought tolerance in future studies.13 page(s

    The Behaviour of Players behind Poker Tables

    No full text
    The bachelor thesis deals with the behaviour of poker players, which can be encountered in the game of poker. In my work I am gradually engaged in non-verbal communication, verbal communication and the ethics of poker players. In the section of non-verbal communication, I analyse individual parts of the body from the most important for reading to the least important. I also deal with psychological effects that can greatly influence the behaviour of the players. In the section of verbal communication, I focus mainly on what verbal communication in poker can serve and how to use this knowledge. In the last part I present the issue of ethical behaviour. In the practical part I use the knowledge from my own research as well as the knowledge of the players who were willing to share with me their knowledge. I also use the analysis of the video which is available on YouTube

    Additional file 3: Figure S2. of High-resolution identification and abundance profiling of cassava (Manihot esculenta Crantz) microRNAs

    No full text
    Predicted secondary structure of miRNA precursors identified in this study. Most of the miRNAs were from unbranched terminal loops as while a few had branched terminal loops. The miRNAs are colored in red. (PPTX 473 kb

    Additional file 2: Figure S1. of High-resolution identification and abundance profiling of cassava (Manihot esculenta Crantz) microRNAs

    No full text
    The sum of abundances of sequences matching to all new cassava miRNAs identified in this study. Precursors are plotted against their locations and the overall sRNA distribution within a 3 kb vicinity in the genomic chunk. The most abundant sequence is denoted with a red arrow; other sRNAs of different sizes are also shown. Some miRNAs were mapped to loci with high levels of sRNAs as well as to loci with low levels of sRNAs. (PPTX 270 kb
    corecore