20 research outputs found

    A phenotypic plasticity framework for assessing intraspecific variation in arbuscular mycorrhizal fungal traits

    No full text
    Statistical models of ecosystem functioning based on species traits are valuable tools for predicting how nutrient cycling will respond to global change. However, species such as arbuscular mycorrhizal fungi (AMF) have evolved high intraspecific trait variation, making trait characterization and inclusion in functional trait models difficult. We present a five-part framework based on experimental designs from the phenotypic plasticity literature to quantify AMF intraspecific trait variation in a nutrient cycling context. Framework experiments involve exposing AMF replicates to different environmental conditions and recording trait values to quantify the (i) degree of variation, (ii) reversibility of traits, (iii) relationships among traits, (iv) adaptive nature of traits and (v) potential for trait variation to evolve. We include a phenotypic trajectory analysis of a simulated data set to illustrate relationships among traits. To focus future research, we provide a synthesis of AMF traits whose evolution is particularly relevant to nutrient cycling and environmental factors that induce variation in those traits. Synthesis. Characterizing the depth and range of arbuscular mycorrhizal fungal trait variation is essential for predicting responses to natural and anthropogenic environmental changes, as well as understanding past and future fungal trait evolutionary trajectories in the Tree of Life. Characterizing the depth and range of arbuscular mycorrhizal fungal trait variation is essential for predicting responses to natural and anthropogenic environmental changes, as well as understanding past and future fungal trait evolutionary trajectories in the Tree of Life. Here, we present an experimental framework for characterizing arbuscular mycorrhizal fungal trait variation. © 2014 British Ecological Society

    Parasponia: a novel system for studying mutualism stability

    No full text
    Understanding how mutualistic interactions are stabilized in the presence of cheaters is a major question in evolutionary biology. The legume–rhizobia mutualism has become a model system for studying how plants control cheating partners. However, the generality and evolutionary origins of these control mechanisms are intensely debated. In this Opinion article, we argue that a novel system – the Parasponia–rhizobia mutualism – will significantly advance research in mutualism stability. Parasponia is the only non-legume lineage to have evolved a rhizobial symbiosis, which provides an evolutionary replicate to test how rhizobial exploitation is controlled. Evidence also suggests that this symbiosis is young. This allows studies at an earlier evolutionary stage in mutualisms, so the origin of control mechanisms can be better understood

    Slipping through the cracks: rubber plantation is unsuitable breeding habitat for frogs in Xishuangbanna, China.

    Get PDF
    Conversion of tropical forests into agriculture may present a serious risk to amphibian diversity if amphibians are not able to use agricultural areas as habitat. Recently, in Xishuangbanna Prefecture, Yunnan Province - a hotspot of frog diversity within China - two-thirds of the native tropical rainforests have been converted into rubber plantation agriculture. We conducted surveys and experiments to quantify habitat use for breeding and non-breeding life history activities of the native frog species in rainforest, rubber plantation and other human impacted sites. Rubber plantation sites had the lowest species richness in our non-breeding habitat surveys and no species used rubber plantation sites as breeding habitat. The absence of breeding was likely not due to intrinsic properties of the rubber plantation pools, as our experiments indicated that rubber plantation pools were suitable for tadpole growth and development. Rather, the absence of breeding in the rubber plantation was likely due to a misalignment of breeding and non-breeding habitat preferences. Analyses of our breeding surveys showed that percent canopy cover over pools was the strongest environmental variable influencing breeding site selection, with species exhibiting preferences for pools under both high and low canopy cover. Although rubber plantation pools had high canopy cover, the only species that bred in high canopy cover sites used the rainforest for both non-breeding and breeding activities, completing their entire life cycle in the rainforest. Conversely, the species that did use the rubber plantation for non-breeding habitat preferred to breed in low canopy sites, also avoiding breeding in the rubber plantation. Rubber plantations are likely an intermediate habitat type that 'slips through the cracks' of species habitat preferences and is thus avoided for breeding. In summary, unlike the rainforests they replaced, rubber plantations alone may not be able to support frog populations. © 2013 Behm et al

    Multilevel statistical models and the analysis of experimental data.

    No full text
    Data sets from ecological experiments can be difficult to analyze, due to lack of independence of experimental units and complex variance structures. In addition, information of interest may lie in complicated contrasts among treatments, rather than direct output from statistical tests. Here, we present a statistical framework for analyzing data sets containing non-independent experimental units and differences in variance among treatments (heteroscedasticity) and apply this framework to experimental data on interspecific competition among three tadpole species. Our framework involves three steps: (1) use a multilevel regression model to calculate coefficients of treatment effects on response variables; (2) combine coefficients to quantify the strength of competition (the target information of our experiment); and (3) use parametric bootstrapping to calculate significance of competition strengths. We repeated this framework using three multilevel regression models to analyze data at the level of individual tadpoles, at the replicate level, and at the replicate level accounting for heteroscedasticity. Comparing results shows the need to correctly specify the statistical model, with the model that accurately accounts for heteroscedasticity leading to different conclusions from the other two models. This approach gives a single, comprehensive analysis of experimental data that can be used to extract informative biological parameters in a statistically rigorous way. © 2013 by the Ecological Society of America

    EXOTICS EXHIBIT MORE EVOLUTIONARY HISTORY THAN NATIVES: A COMPARISON OF THE ECOLOGY AND EVOLUTION OF EXOTIC AND NATIVE ANOLE LIZARDS

    No full text
    Long‐distance colonization was once rare causing species within regions to be closely related. Now, in the Anthropocene, biogeographic structure is being eroded by species introductions. Here, we contrast the ecology and evolution of native versus exotic Caribbean Anolis lizards and show that the once strong biogeographic structure in the clade has been altered by the introduction of 22 Anolis species. Anole introductions are more frequent and span greater distances than natural anole colonizations. As a result, exotic anole populations in the Anthropocene often contain more genetic diversity than native populations, and anole phylogenetic diversity on islands is rapidly increasing

    Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review

    No full text
    Abstract: Recently, there has been a shift from static stretching (SS) or proprioceptive neuromuscular acilitation (PNF) stretching within a warm-up to a greater emphasis on dynamic stretching (DS). The objective of this review was to compare the effects of SS, DS, and PNF on performance, range of motion (ROM), and injury prevention. The data indicated that SS- (–3.7%), DS- (+1.3%), and PNF- (–4.4%) induced performance changes were small to moderate with testing performed immediately after stretching, possibly because of reduced muscle activation after SS and PNF. A dose–response relationship illustrated greater performance deficits with ≥60 s (–4.6%) than with <60 s (–1.1%) SS per muscle group. Conversely, SS demonstrated a moderate (2.2%) performance benefit at longer muscle lengths. Testing was performed on average 3–5 min after stretching, and most studies did not include poststretching dynamic activities; when these activities were included, no clear performance effect was observed. DS produced small-to-moderate performance improvements when completed within minutes of physical activity. SS and PNF stretching had no clear effect on all-cause or overuse injuries; no data are available for DS. All forms of training induced ROM improvements,typically lasting <30 min. Changes may result from acute reductions in muscle and tendon stiffness or from neural adaptations causing an improved stretch tolerance. Considering the small-to-moderate changes immediately after stretching and the study limitations, stretching within a warm-up that includes additional poststretching dynamic activity is recommended for reducing muscle injuries and increasing joint ROM with nconsequential effects on subsequent athletic performance
    corecore