172 research outputs found

    A study of affecting factors on the degree of university students loyalty to the brand of nike

    Get PDF
    There are different factors which affect the way people select and continue their attitudes towards products of certain brands. The main objective of the present study was investigating factors affecting the degree of University students’ loyalty  to Nike brand. This research is functional in regard with objective and descriptive-temporary in terms of kind; it was conducted among BA, MA, and PhD student of Physical Education in Tehran University with a sample size of 248 subjects. Researcher-constructed questionnaire, which examined three influential factors (trust, purchase intent, brand image), on the loyalty of University Students, was used to collect data. Research data was analyzed using EM algorithm and Spss software and stepwise multiple regression was applied to investigate the impact of variables on students’ loyalty. Significant regression model showed that all three variables of trust, purchase intent, and brand image had significant effects. Brand trust was the most influential variable with regression coefficient of   0.740 (p<0.001).Based on the results of the present study, the hierarchical priority of three variables, according to students’ replies, was brand trust, purchase intent, and brand image. The results showed that brand trust had the first priority among variables and that Nike brand has managed, on the basis of quality, to satisfy various needs, intentions, and tasks of larger number of university students.Key words: Nike brand, brand trusts, brand image, loyalty, purchase inten

    Joint Source and Relay Optimization for Parallel MIMO Relay Networks

    Get PDF
    In this article, we study the optimal structure of the source precoding matrix and the relay amplifying matrices for multiple-input multiple-output (MIMO) relay communication systems with parallel relay nodes. Two types of receivers are considered at the destination node: (1) The linear minimal mean-squared error (MMSE) receiver; (2) The nonlinear decision feedback equalizer based on the minimal MSE criterion. We show that for both receiver schemes, the optimal source precoding matrix and the optimal relay amplifying matrices have a beamforming structure. Using such optimal structure, joint source and relay power loading algorithms are developed to minimize the MSE of the signal waveform estimation at the destination. Compared with existing algorithms for parallel MIMO relay networks, the proposed joint source and relay beamforming algorithms have significant improvement in the system bit-error-rate performance

    (De)Constructing a Natural and Flavorful Supersymmetric Standard Model

    Full text link
    Using the framework of deconstruction, we construct simple, weakly-coupled supersymmetric models that explain the Standard Model flavor hierarchy and produce a flavorful soft spectrum compatible with precision limits. Electroweak symmetry breaking is fully natural; the mu-term is dynamically generated with no B mu-problem and the Higgs mass is easily raised above LEP limits without reliance on large radiative corrections. These models possess the distinctive spectrum of superpartners characteristic of "effective supersymmetry": the third generation superpartners tend to be light, while the rest of the scalars are heavy.Comment: 36 pages, 4 figures ; v2: references added, expanded discussion of FCNC

    Interspecific Hybridization Yields Strategy for South Pacific Filariasis Vector Elimination

    Get PDF
    Lymphatic filariasis (LF) is a global health problem, with over 120 million people affected annually. The current LF elimination program is focused on administering anti-filarial drugs to the entire at-risk population via annual mass drug administration (MDA). While the MDA program is proving effective in many areas, other areas may require augmentative measures such as vector control. An example of the latter is provided by some regions of the South Pacific where Aedes polynesiensis is the primary vector. Here, we describe a novel vector control approach based upon naturally occurring Wolbachia bacterial infections. Wolbachia are endosymbiotic intracellular bacteria that cause a form of sterility known as cytoplasmic incompatibility. We show that introgression crosses with mosquitoes that are infected with a different Wolbachia type results in an A. polynesiensis strain (designated ‘CP’) that is incompatible with naturally infected mosquitoes. No difference in mating competitiveness is observed between CP males and wild type males in laboratory assays. The results support continued development of the strategy as a tool to improve public health

    A microscopic theory of gauge mediation

    Get PDF
    We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.Comment: 24 pages, 2 figures, accepted to JHEP for publicatio

    A Hybrid Higgs

    Get PDF
    We construct composite Higgs models admitting a weakly coupled Seiberg dual description. We focus on the possibility that only the up-type Higgs is an elementary field, while the down-type Higgs arises as a composite hadron. The model, based on a confining SQCD theory, breaks supersymmetry and electroweak symmetry dynamically and calculably. This simultaneously solves the \mu/B_\mu problem and explains the smallness of the bottom and tau masses compared to the top mass. The proposal is then applied to a class of models where the same confining dynamics is used to generate the Standard Model flavor hierarchy by quark and lepton compositeness. This provides a unified framework for flavor, supersymmetry breaking and electroweak physics. The weakly coupled dual is used to explicitly compute the MSSM parameters in terms of a few microscopic couplings, giving interesting relations between the electroweak and soft parameters. The RG evolution down to the TeV scale is obtained and salient phenomenological predictions of this class of "single-sector" models are discussed.Comment: 56 pages, 7 figures, v2: discussion on FCNCs and references added, v3: JHEP versio

    Fano resonances in plasmonic core-shell particles and the Purcell effect

    Full text link
    Despite a long history, light scattering by particles with size comparable with the light wavelength still unveils surprising optical phenomena, and many of them are related to the Fano effect. Originally described in the context of atomic physics, the Fano resonance in light scattering arises from the interference between a narrow subradiant mode and a spectrally broad radiation line. Here, we present an overview of Fano resonances in coated spherical scatterers within the framework of the Lorenz-Mie theory. We briefly introduce the concept of conventional and unconventional Fano resonances in light scattering. These resonances are associated with the interference between electromagnetic modes excited in the particle with different or the same multipole moment, respectively. In addition, we investigate the modification of the spontaneous-emission rate of an optical emitter at the presence of a plasmonic nanoshell. This modification of decay rate due to electromagnetic environment is referred to as the Purcell effect. We analytically show that the Purcell factor related to a dipole emitter oriented orthogonal or tangential to the spherical surface can exhibit Fano or Lorentzian line shapes in the near field, respectively.Comment: 28 pages, 10 figures; invited book chapter to appear in "Fano Resonances in Optics and Microwaves: Physics and Application", Springer Series in Optical Sciences (2018), edited by E. O. Kamenetskii, A. Sadreev, and A. Miroshnichenk

    The Cosmology of Composite Inelastic Dark Matter

    Get PDF
    Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark mesons and baryons results in several qualitatively different configurations of the resulting dark matter hadrons depending on the relative mass scales in the system.Comment: 31 pages, 4 figures; references added, typos correcte

    Use of nanomaterials in the pretreatment of water samples for environmental analysis

    Get PDF
    The challenge of providing clean drinking water is of enormous relevance in today’s human civilization, being essential for human consumption, but also for agriculture, livestock and several industrial applications. In addition to remediation strategies, the accurate monitoring of pollutants in water sup-plies, which most of the times are present at low concentrations, is a critical challenge. The usual low concentration of target analytes, the presence of in-terferents and the incompatibility of the sample matrix with instrumental techniques and detectors are the main reasons that renders sample preparation a relevant part of environmental monitoring strategies. The discovery and ap-plication of new nanomaterials allowed improvements on the pretreatment of water samples, with benefits in terms of speed, reliability and sensitivity in analysis. In this chapter, the use of nanomaterials in solid-phase extraction (SPE) protocols for water samples pretreatment for environmental monitoring is addressed. The most used nanomaterials, including metallic nanoparticles, metal organic frameworks, molecularly imprinted polymers, carbon-based nanomaterials, silica-based nanoparticles and nanocomposites are described, and their applications and advantages overviewed. Main gaps are identified and new directions on the field are suggested.publishe
    corecore