22 research outputs found

    The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field

    Get PDF
    INTRODUCTION: Environmental exposure to man-made electromagnetic fields has been steadily increasing with the growing demand for electronic items that are operational at various frequencies. Testicular function is particularly susceptible to radiation emitted by electromagnetic fields. OBJECTIVES: This study aimed to examine the therapeutic effects of a pulsed electromagnetic field (100 Hz) on the reproductive systems of male Wistar rats (70 days old). METHODS: The experiments were divided into five groups: microwave sham, microwave exposure (2.45 GHz), pulsed electromagnetic field sham, pulsed electromagnetic field (100 Hz) exposure, and microwave/pulsed electromagnetic field exposure. The animals were exposed for 2 hours/day for 60 days. After exposure, the animals were sacrificed, their sperm was used for creatine and caspase assays, and their serum was used for melatonin and testosterone assays. RESULTS: The results showed significant increases in caspase and creatine kinase and significant decreases in testosterone and melatonin in the exposed groups. This finding emphasizes that reactive oxygen species (a potential inducer of cancer) are the primary cause of DNA damage. However, pulsed electromagnetic field exposure relieves the effect of microwave exposure by inducing Faraday currents. CONCLUSIONS: Electromagnetic fields are recognized as hazards that affect testicular function by generating reactive oxygen species and reduce the bioavailability of androgen to maturing spermatozoa. Thus, microwave exposure adversely affects male fertility, whereas pulsed electromagnetic field therapy is a non-invasive, simple technique that can be used as a scavenger agent to combat oxidative stress

    Crystal Dynamics of Solidified Argon

    Get PDF

    Biological responses of mobile phone frequency exposure

    No full text
    959-981Existence of low level electromagnetic fields in the environment has been known since antiquity and their biological implications are noted for several decades. As such dosimetry of such field parameters and their emissions from various sources of mass utilization has been a subject of constant concern. Recent advancement in mobile communications has also drawn attention to their biological effects. Hand held children and adults alike generally use mobile sources as cordless phones in various positions with respect to the body. Further, an increasing number of mobile communication base stations have led to wide ranging concern about possible health effects of radiofrequency emissions. There are two distinct possibilities by which health could be affected as a result of radio frequency field exposure. These are thermal effects caused by holding mobile phones close to the body and extended conversations over a long period of time. Secondly, there could be possibly non thermal effects from both phones and base stations whereby the affects could also be cumulative. Some people may be adversely affected by the environmental impact of mobile phone base stations situated near their homes, schools or any other place. In addition to mobile phones, appliances like microwave oven etc are also in increasing use. Apart from the controversy over the possible health effects due to the non-thermal effect of electromagnetic fields the electromagnetic interaction of portable radio waves with human head needs to be quantitatively evaluated. Relating to this is the criteria of safe exposure to the population at large. While a lot of efforts have gone into resolving the issue, a clear picture has yet to emerge. Recent advances and the problems relating to the safety criteria are discussed

    Principles of nanoscience: An overview

    No full text
    1008-1019The scientific basis of nanotechnology as envisaged from the first principles is compared to bulk behavior. Development of nanoparticles having controllable physical and electronic properties has opened up possibility of designing artificial solids. Top down and bottom up approaches are emphasized. The role of nanoparticle (quantum dots) application in nanophotonics (photovoltaic cell), and drug delivery vehicle is discussed. Fundamentals of DNA structure as the prime site in bionanotechnological manipulations is also discussed. A summary of presently available devices and applications are presented

    Dispersion of Lattice Waves in Palladium

    No full text

    Effects of low level pulsed radio frequency fields on induced osteoporosis in rat bone

    No full text
    581-586<span style="font-size:15.0pt;mso-bidi-font-size:8.0pt; line-height:115%;font-family:" times="" new="" roman","serif";mso-fareast-font-family:="" "times="" roman";mso-ansi-language:en-us;mso-fareast-language:en-us;="" mso-bidi-language:ar-sa"="">Effect of modulated pulsed electromagnetic fields (PEMFs; carrier frequency, 14 MHz. modulated at 16 Hz of amplitude 10 V peak to peak) on sciatic neurectomy induced osteoporosis in rat femur and tibia resulted in statistically significant increase in bone mineral density, and deceleration in bone resorption process and consequently further osteoporosis in rat bone. These results suggest that such an effective window of pulsed radio frequency fields may be used therapeutically for the treatment of osteoporosis. </span

    Dielectric parameters of dry and wet soils at 14.89 GHz

    Get PDF
    130-134Dielectric parameters of a number of samples distributed over a wide geographic range of India soils have been measured at 14.89 GHz. A waveguide method involving a two-point solution of a transcendental equation, found to be successful for low and medium loss dielectrics, has been adopted for measurement on dry and wet soil samples. The method can also be applied for other frequency ranges and in the estimation of soil moistures

    Bio-distribution and toxicity assessment of intravenously injected anti-HER2 antibody conjugated CdSe/ZnS quantum dots in Wistar rats

    No full text
    Dhermendra K Tiwari1, Takashi Jin2, Jitendra Behari11School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India; 2WPI-Immunology Frontier Research Center, Osaka University, Osaka, JapanAbstract: Anti-HER2 antibody conjugated with quantum dots (anti-HER2ab-QDs) is a very recent fluorescent nanoprobe for HER2+ve breast cancer imaging. In this study we investigated in-vivo toxicity of anti-HER2ab conjugated CdSe/ZnS QDs in Wistar rats. For toxicity evaluation of injected QDs sample, body weight, organ coefficient, complete blood count (CBC), biochemistry panel assay (AST, ALT, ALP, and GGTP), comet assay, reactive oxygen species, histology, and apoptosis were determined. Wistar rat (8&amp;ndash;10 weeks old) were randomly divided into 4 treatment groups (n = 6). CBC and biochemistry panel assay showed nonsignificant changes in the anti-HER2ab-QDs treated group but these changes were significant (P &amp;lt; 0.05) in QDs treated group. No tissue damage, inflammation, lesions, and QDs deposition were found in histology and TEM images of the anti-HER2ab-QDs treated group. Apoptosis in liver and kidney was not found in the anti-HER2ab-QDs treated group. Animals treated with nonconjugated QDs showed comet formation and apoptosis. Cadmium deposition was confirmed in the QDs treated group compared with the anti-HER2ab-QDs treated group. The QDs concentration (500 nM) used for this study is suitable for in-vivo imaging. The combine data of this study support the biocompatibility of anti-HER2ab-QDs for breast cancer imaging, suggesting that the antibody coating assists in controlling any possible adverse effect of quantum dots.Keywords: cancer bioimaging, HER2, anti-HER2 antibody, quantum dots, comet assa
    corecore