9 research outputs found

    Development, printability and post-curing studies of formulations of materials resistant to microbial attachment for use in inkjet based 3D printing

    Get PDF
    Purpose: This paper aims to print 3D structures from polymers that resist bacterial attachment by reactive jetting of acrylate monomers. Design/methodology/approach: The first step towards printing was ink development. Inks were characterised to carry out an estimation of their potential printability using the Z parameter to predict stable jetting conditions. Printability conditions were optimised for each ink using a Dimatix DMP-2800, which enabled 3D structures to be fabricated. Findings: UV photo-initiated polymers, which resist bacterial attachment, were found to be printable using piezo-based inkjet printers. The waveform required for each ink depends on the value of the Z parameter. Once the waveform and the printability parameters were optimised, 3D objects were fabricated. Research limitations/implications: This methodology has been confirmed as an effective method to 3D print materials that have been demonstrated to be bacteria resistant. However, ink curing depends on modification of some parameters (such as photoinitiator concentration or UV exposure time) which would result in an improvement of the curing process post jetting. Social implications: The combination of inkjet based 3D printing with new materials resistant to bacterial attachment means the possibility of building customised medical devices with a high level of complexity and bespoke features can be fully realised. The scope and variability of the devices produced will exceed what can be achieved using standard fabrication methodologies and can be applied to reduce the incidence of device associated infections and to address increased morbidity, mortality and health care costs associated with nosocomial infections. Originality/value: In this paper, the novel use of materials that resist bacterial attachment has been described to build 3D structures using material jetting. Its value lies on the potential impact this methodology could produce in the biomedical device and research fields

    3D reactive inkjet printing of bisphenol A-polycarbonate

    Get PDF
    Additive Manufacturing (AM) techniques have gained extensive attention recently as they are able to directly produce 3D parts utilising a layer-by-layer manner. Inkjet printing is one such technique which can produce micron-scale features but is generally constrained to liquid viscosities of less than 30 mPa·s, therefore available materials are limited. A 3D reactive inkjet printing (3DRIJP) approach to deposit low viscosity monomers and polymerise in-situ to form polymer parts is emerging. In this work, a 3DRIJP approach has been developed to fabricate bisphenol A-polycarbonate (BPA-PC) for the first time by using a low viscosity reactive ink containing monomers, catalyst and solvent. A set of processing parameters were explored and optimised including temperature of droplet formation, substrate temperature and droplet spacing to print films. With a thermal post-curing process, BPA-PC was formed successfully with a molecular weight comparable to those which were manufactured by the conventional melt transesterification process. The thermal properties were evaluated suggesting good thermal resistance characteristics. Finally, a 3D ziggurat structure was printed to demonstrate the capability to fabricate BPA-PC by an AM method, thus broadened the library of AM materials to include engineering grade polymers via 3DRJIP. This approach was innovative in both the BPA-PC material formulation and the 3DRIJP process development from traditional inkjet printing methods, where a single printable formulation of monomers for thermoplastic optical-clear BPA-PC was able to be printed using one printhead to form 3D structures

    Design of highly stabilized nanocomposite inks based on biodegradable polymer-matrix and gold nanoparticles for Inkjet Printing

    Get PDF
    Nowadays there is a worldwide growing interest in the Inkjet Printing technology owing to its potentially high levels of geometrical complexity, personalization and resolution. There is also social concern about usage, disposal and accumulation of plastic materials. In this work, it is shown that sugar-based biodegradable polyurethane polymers exhibit outstanding properties as polymer-matrix for gold nanoparticles composites. These materials could reach exceptional stabilization levels, and demonstrated potential as novel robust inks for Inkjet based Printing. Furthermore, a physical comparison among different polymers is discussed based on stability and printability experiments to search for the best ink candidate. The University of Seville logo was printed by employing those inks, and the presence of gold was confirmed by ToF-SIMS. This approach has the potential to open new routes and applications for fabrication of enhanced biomedical nanometallic-sensors using stabilized AuNP

    A Tripropylene Glycol Diacrylate-based Polymeric Support Ink for Material Jetting

    Get PDF
    © 2017 Support structures and materials are indispensable components in many Additive Manufacturing (AM) systems in order to fabricate complex 3D structures. For inkjet-based AM techniques (known as Material Jetting), there is a paucity of studies on specific inks for fabricating such support structures. This limits the potential of fabricating complex 3D objects containing overhanging structures. In this paper, we investigate the use of Tripropylene Glycol Diacrylated (TPGDA) to prepare a thermally stable ink with reliable printability to produce removable support structures in an experimental Material Jetting system. The addition of TGME to the TPGDA was found to considerably reduce the modulus of the photocured structure from 575MPa down to 27MPa by forming micro-pores in the cured structure. The cured support structure was shown to be easily removed following the fabrication process. During TG-IR tests the T 5% temperature of the support structure was above 150°C whilst the majority of decomposition happened around 400°C. Specimens containing overhanging structures (gate-like structure, propeller structure) were successfully manufactured to highlight the viability of the ink as a support material

    Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation

    Get PDF
    We demonstrate the formulation of advanced functional 3D printing inks that prevent the formation of bacterial biofilms in vivo. Starting from polymer libraries, we show that a biofilm resistant object can be 3D printed with the potential for shape and cell instructive function to be selected independently. When tested in vivo, the candidate materials not only resisted bacterial attachment but drove the recruitment of host defences in order to clear infection. To exemplify our approach, we manufacture a finger prosthetic and demonstrate that it resists biofilm formation – a cell instructive function that can prevent the development of infection during surgical implantation. More widely, cell instructive behaviours can be ‘dialled up’ from available libraries and may include in the future such diverse functions as the modulation of immune response and the direction of stem cell fate

    Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices

    Get PDF
    Chronic infection as a result of bacterial biofilm formation on implanted medical devices is a major global healthcare problem requiring new biocompatible, biofilm-resistant materials. Here we demonstrate how bespoke devices can be manufactured through ink-jet-based 3D printing using bacterial biofilm inhibiting formulations without the need for eluting antibiotics or coatings. Candidate monomers were formulated and their processability and reliability demonstrated. Formulations for in vivo evaluation of the 3D printed structures were selected on the basis of their in vitro bacterial biofilm inhibitory properties and lack of mammalian cell cytotoxicity. In vivo in a mouse implant infection model, Pseudomonas aeruginosa biofilm formation on poly-TCDMDA was reduced by ∼99% when compared with medical grade silicone. Whole mouse bioluminescence imaging and tissue immunohistochemistry revealed the ability of the printed device to modulate host immune responses as well as preventing biofilm formation on the device and infection of the surrounding tissues. Since 3D printing can be used to manufacture devices for both prototyping and clinical use, the versatility of ink-jet based 3D-printing to create personalised functional medical devices is demonstrated by the biofilm resistance of both a finger joint prosthetic and a prostatic stent printed in poly-TCDMDA towards P. aeruginosa and Staphylococcus aureus

    Exploiting Generative Design for Multi-Material Inkjet 3D Printed Cell Instructive, Bacterial Biofilm Resistant Composites

    Get PDF
    As our understanding of disease grows, it is becoming established that treatment needs to be personalized and targeted to the needs of the individual. In this paper we show that multi-material inkjet-based 3D printing, when backed with generative design algorithms, can bring a step change in the personalization of medical devices. We take cell-instructive materials known for their resistance to bacterial biofilm formation and reformulate for multi-material inkjet-based 3D printing. Specimens with customizable mechanical moduli are obtained without loss of their cell-instructive properties. The manufacturing is coupled to a design algorithm that takes a user-specified deformation and computes the distribution of the materials needed to meet the target under given load constraints. Optimisation led to a voxel map file defining where different materials should be placed. Manufactured products were assessed against the mechanical and cell-instructive specifications and ultimately showed how multifunctional personalization emerges from generative design driven 3D printing

    Exploiting Generative Design for Multi-Material Inkjet 3D Printed Cell Instructive, Bacterial Biofilm Resistant Composites

    No full text
    As our understanding of disease grows, it is becoming established that treatment needs to be personalized and targeted to the needs of the individual. In this paper we show that multi-material inkjet-based 3D printing, when backed with generative design algorithms, can bring a step change in the personalization of medical devices. We take cell-instructive materials known for their resistance to bacterial biofilm formation and reformulate for multi-material inkjet-based 3D printing. Specimens with customizable mechanical moduli are obtained without loss of their cell-instructive properties. The manufacturing is coupled to a design algorithm that takes a user-specified deformation and computes the distribution of the materials needed to meet the target under given load constraints. Optimisation led to a voxel map file defining where different materials should be placed. Manufactured products were assessed against the mechanical and cell-instructive specifications and ultimately showed how multifunctional personalization emerges from generative design driven 3D printing.</p
    corecore