2,035 research outputs found
Considerations of electron beam propagation from space vehicles
Theoretical analysis of electron beam array propagation from spacecraf
Finite difference time domain modeling of spiral antennas
The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials
Carbon fiber plume sampling for large scale fire tests at Dugway Proving Ground
Carbon fiber sampling instruments were developed: passive collectors made of sticky bridal veil mesh, and active instruments using a light emitting diode (LED) source. These instruments measured the number or number rate of carbon fibers released from carbon/graphite composite material when the material was burned in a 10.7 m (35 ft) dia JP-4 pool fire for approximately 20 minutes. The instruments were placed in an array suspended from a 305 m by 305 m (1000 ft by 1000 ft) Jacob's Ladder net held vertically aloft by balloons and oriented crosswind approximately 140 meters downwind of the pool fire. Three tests were conducted during which released carbon fiber data were acquired. These data were reduced and analyzed to obtain the characteristics of the released fibers including their spatial and size distributions and estimates of the number and total mass of fibers released. The results of the data analyses showed that 2.5 to 3.5 x 10 to the 8th power single carbon fibers were released during the 20 minute burn of 30 to 50 kg mass of initial, unburned carbon fiber material. The mass released as single carbon fibers was estimated to be between 0.1 and 0.2% of the initial, unburned fiber mass
Radiation testing of composite materials, in situ versus ex situ effects
The effect of post irradiation test environments on tensile properties of representative advanced composite materials (T300/5208, T300/934, C6000/P1700) was investigated. Four ply (+ or - 45 deg/+ or - 45 deg) laminate tensile specimens were exposed in vacuum up to a bulk dose of 1 x 10 to the 10th power rads using a mono-energetic fluence of 700 keV electrons from a Van de Graaff accelerator. Post irradiation testing was performed while specimens were being irradiated (in situ data), in vacuum after cessation of irradiation (in vacuo data), and after exposure to air (ex situ data). Room temperature and elevated temperature effects were evaluated. The radiation induced changes to the tensile properties were small. Since the absolute changes in tensile properties were small, the existance of a post irradiation test environment effect was indeterminate
Event-driven simulations of a plastic, spiking neural network
We consider a fully-connected network of leaky integrate-and-fire neurons
with spike-timing-dependent plasticity. The plasticity is controlled by a
parameter representing the expected weight of a synapse between neurons that
are firing randomly with the same mean frequency. For low values of the
plasticity parameter, the activities of the system are dominated by noise,
while large values of the plasticity parameter lead to self-sustaining activity
in the network. We perform event-driven simulations on finite-size networks
with up to 128 neurons to find the stationary synaptic weight conformations for
different values of the plasticity parameter. In both the low and high activity
regimes, the synaptic weights are narrowly distributed around the plasticity
parameter value consistent with the predictions of mean-field theory. However,
the distribution broadens in the transition region between the two regimes,
representing emergent network structures. Using a pseudophysical approach for
visualization, we show that the emergent structures are of "path" or "hub"
type, observed at different values of the plasticity parameter in the
transition region.Comment: 9 pages, 6 figure
Insulation bonding test system
A method and a system for testing the bonding of foam insulation attached to metal is described. The system involves the use of an impacter which has a calibrated load cell mounted on a plunger and a hammer head mounted on the end of the plunger. When the impacter strikes the insulation at a point to be tested, the load cell measures the force of the impact and the precise time interval during which the hammer head is in contact with the insulation. This information is transmitted as an electrical signal to a load cell amplifier where the signal is conditioned and then transmitted to a fast Fourier transform (FFT) analyzer. The FFT analyzer produces energy spectral density curves which are displayed on a video screen. The termination frequency of the energy spectral density curve may be compared with a predetermined empirical scale to determine whether a igh quality bond, good bond, or debond is present at the point of impact
Web-based multimodal graphs for visually impaired people
This paper describes the development and evaluation of Web-based multimodal graphs designed for visually impaired and blind people. The information in the graphs is conveyed to visually impaired people through haptic and audio channels. The motivation of this work is to address problems faced by visually impaired people in accessing graphical information on the Internet, particularly the common types of graphs for data visualization. In our work, line graphs, bar charts and pie charts are accessible through a force feedback device, the Logitech WingMan Force Feedback Mouse. Pre-recorded sound files are used to represent graph contents to users. In order to test the usability of the developed Web graphs, an evaluation was conducted with bar charts as the experimental platform. The results showed that the participants could successfully use the haptic and audio features to extract information from the Web graphs
Treatment with ActRIIB-mFc Produces Myofiber Growth and Improves Lifespan in the \u3cem\u3eActa1\u3c/em\u3e H40Y Murine Model of Nemaline Myopathy
The Serre spectral sequence of a noncommutative fibration for de Rham cohomology
For differential calculi on noncommutative algebras, we construct a twisted
de Rham cohomology using flat connections on modules. This has properties
similar, in some respects, to sheaf cohomology on topological spaces. We also
discuss generalised mapping properties of these theories, and relations of
these properties to corings. Using this, we give conditions for the Serre
spectral sequence to hold for a noncommutative fibration. This might be better
read as giving the definition of a fibration in noncommutative differential
geometry. We also study the multiplicative structure of such spectral
sequences. Finally we show that some noncommutative homogeneous spaces satisfy
the conditions to be such a fibration, and in the process clarify the
differential structure on these homogeneous spaces. We also give two explicit
examples of differential fibrations: these are built on the quantum Hopf
fibration with two different differential structures.Comment: LaTeX, 33 page
Kinetic analysis of pre-ribosome structure in vivo
Pre-ribosomal particles undergo numerous structural changes during maturation, but their high complexity and short lifetimes make these changes very difficult to follow in vivo. In consequence, pre-ribosome structure and composition have largely been inferred from purified particles and analyzed in vitro. Here we describe techniques for kinetic analyses of the changes in pre-ribosome structure in living cells of Saccharomyces cerevisiae. To allow this, in vivo structure probing by DMS modification was combined with affinity purification of newly synthesized 20S pre-rRNA over a time course of metabolic labeling with 4-thiouracil. To demonstrate that this approach is generally applicable, we initially analyzed the accessibility of the region surrounding cleavage site D site at the 3′ end of the mature 18S rRNA region of the pre-rRNA. This revealed a remarkably flexible structure throughout 40S subunit biogenesis, with little stable RNA–protein interaction apparent. Analysis of folding in the region of the 18S central pseudoknot was consistent with previous data showing U3 snoRNA–18S rRNA interactions. Dynamic changes in the structure of the hinge between helix 28 (H28) and H44 of pre-18S rRNA were consistent with recently reported interactions with the 3′ guide region of U3 snoRNA. Finally, analysis of the H18 region indicates that the RNA structure matures early, but additional protection appears subsequently, presumably reflecting protein binding. The structural analyses described here were performed on total, affinity-purified, newly synthesized RNA, so many classes of RNA and RNA–protein complex are potentially amenable to this approach
- …
