67 research outputs found

    The pathogenesis of zoonotic viral infections:Lessons learned by studying reservoir hosts

    Get PDF
    Zoonotic viral infections that cause severe disease or even death in some people may be asymptomatic or mild in reservoir hosts. Comparison of the pathogenesis of these two host categories may potentially explain the difference in disease. However, infections in reservoir hosts are often neglected. Therefore, we compared the pathogenesis of rabies virus, macacine alphaherpesvirus, West Nile virus, Puumala orthohantavirus, monkeypox virus, Lassa mammarenavirus, H5N1 highly pathogenic avian influenza, Marburg virus, Nipah virus, Middle East respiratory syndrome, and simian/human immunodeficiency viruses in both humans and reservoir hosts. We showed that most aspects of the pathogeneses were remarkably similar. The remaining differences lead to the identification of tipping points in the pathogeneses that are important for explaining the disease outcome in severe human cases. Further elucidating these tipping points by studying zoonotic viral infections in their reservoir hosts may teach us how to reduce the severity of zoonotic viral diseases in humans.</p

    The first report of Listeria monocytogenes detected in pinnipeds

    Get PDF
    The aim of this study was to describe the pathology in seals from which Listeria monocytogenes was isolated and investigate if the lesions’ nature and severity were related to the phylogeny of isolates. L. monocytogenes was isolated from 13 of 50 (26%) dead grey seal (Halichoerus grypus) pups, six (12%) in systemic distribution, on the Isle of May, Scotland. Similar fatal L. monocytogenes-associated infections were found in a grey seal pup from Carnoustie, Scotland, and a juvenile harbour seal (Phoca vitulina) in the Netherlands. Whole genome sequencing of 15 of the L. monocytogenes isolates identified 13 multilocus sequence types belonging to the L. monocytogenes lineages I and II, but with scant phenotypic and genotypic antimicrobial resistance and limited variation in virulence factors. The phylogenetic diversity present suggests there are multiple sources of L. monocytogenes, even for seal pups born in the same colony and breeding season. This is the first description of L. monocytogenes isolated from, and detected in lesions in, pinnipeds and indicates that infection can be systemic and fatal. Therefore, listeriosis may be an emerging or overlooked disease in seals with infection originating from contamination of the marine environment.</p

    The Bank Vole (Clethrionomys glareolus) - Small Animal Model for Hepacivirus Infection

    Get PDF
    Many people worldwide suffer from hepatitis C virus (HCV) infection, which is frequently persistent. The lack of efficient vaccines against HCV and the unavailability of or limited compliance with existing antiviral therapies is problematic for health care systems worldwide. Improved small animal models would support further hepacivirus research, including development of vaccines and novel antivirals. The recent discovery of several mammalian hepaciviruses may facilitate such research. In this study, we demonstrated that bank voles (Clethrionomys glareolus) were susceptible to bank vole-associated Hepacivirus F and Hepacivirus J strains, based on the detection of hepaciviral RNA in 52 of 55 experimentally inoculated voles. In contrast, interferon α/β receptor deficient C57/Bl6 mice were resistant to infection with both bank vole hepaciviruses (BvHVs). The highest viral genome loads in infected voles were detected in the liver, and viral RNA was visualized by in situ hybridization in hepatocytes, confirming a marked hepatotropism. Furthermore, liver lesions in infected voles resembled those of HCV infection in humans. In conclusion, infection with both BvHVs in their natural hosts shares striking similarities to HCV infection in humans and may represent promising small animal models for this important human disease

    Pathological findings in stranded harbor porpoises (Phocoena phocoena) with special focus on anthropogenic causes

    Get PDF
    Humans impact natural systems at an unprecedented rate. The North Sea is one of the regions in the world with the highest levels of anthropogenic activity. Here, the harbor porpoise (Phocoena phocoena) is an abundant species and is often regarded as an ecosystem sentinel. A post-mortem surveillance program was established in the Netherlands aimed at increasing knowledge of the effects of human activities on harbor porpoises. In this study, we describe the pathological findings related to anthropogenic and natural causes of death categories in 612 harbor porpoises that stranded between 2008 and 2019, and assess their relations to age, sex, season, and location. The largest anthropogenic category was bycatch (17%), with mainly juveniles affected and peak periods in March and September–October. Other, infrequently diagnosed anthropogenic causes of death were trauma (4%), largely most likely due to ship collisions, and marine debris ingestion and entanglement (0.3%). The risk of dying from anthropogenic causes was highest for juveniles. Lesions compatible with noise-induced hearing loss were investigated in carcasses which were fresh enough to do so (n = 50), with lesions apparent in two porpoises. Non-direct human-induced threats included infectious diseases, which were by far the largest cause of death category (32%), and affected mainly adults. Also, gray seal (Halichoerus grypus) attacks were a frequently assigned cause of death category (24%). There were more acute predation cases in the earlier study years, while porpoises with lesions that suggested escape from gray seal attacks were diagnosed more recently, which could suggest that porpoises adapted to this threat. Our study contributes to understanding porpoise health in response to persisting, new, emerging, and cumulative threats. Building up such knowledge is crucial for conservation management of this protected species

    Intestinal Tropism of a Betacoronavirus (Merbecovirus) in Nathusius’s Pipistrelle Bat (Pipistrellus nathusii), Its Natural Host

    Get PDF
    The emergence of several bat coronavirus-related disease outbreaks in human and domestic animals has fueled surveillance of coronaviruses in bats worldwide. However, little is known about how these viruses interact with their natural hosts. We demonstrate a Betacoronavirus (subgenus Merbecovirus), PN-βCoV, in the intestine of its natural host, Nathusius’s Pipistrelle Bat (Pipistrellus nathusii), by combining molecular and microscopy techniques. Eighty-eight P. nathusii bat carcasses were tested for PN-βCoV RNA by RT-qPCR, of which 25 bats (28%) tested positive. PN-βCoV RNA was more often detected in samples of the intestinal tract than in other sample types. In addition, viral RNA loads were higher in intestinal samples compared to other sample types, both on average and in each individual bat. In one bat, we demonstrated Merbecovirus antigen and PN-βCoV RNA expression in intestinal epithelium and the underlying connective tissue using immunohistochemistry and in situ hybridization, respectively. These results indicate that PN-βCoV has a tropism for the intestinal epithelium of its natural host, Nathusius’s Pipistrelle Bat, and imply that the fecal-oral route is a possible route of transmission.</p

    Faeces as a novel material to estimate lyssavirus prevalence in bat populations

    Get PDF
    Rabies is caused by infection with a lyssavirus. Bat rabies is of concern for both public health and bat conservation. The current method for lyssavirus prevalence studies in bat populations is by oral swabbing, which is invasive for the bats, dangerous for handlers, time-consuming and expensive. In many situations, such sampling is not feasible, and hence, our understanding of epidemiology of bat rabies is limited. Faeces are usually easy to collect from bat colonies without disturbing the bats and thus could be a practical and feasible material for lyssavirus prevalence studies. To further explore this idea, we performed virological analysis on faecal pellets and oral swabs of seven serotine bats (Eptesicus serotinus) that were positive for European bat 1 lyssavirus in the brain. We also performed immunohistochemical and virological analyses on digestive tract samples of these bats to determine potential sources of lyssavirus in the faeces. We found that lyssavirus detection by RT-qPCR was nearly as sensitive in faecal pellets (6/7 bats positive, 86%) as in oral swabs (7/7 bats positive, 100%). The likely source of lyssavirus in the faeces was virus excreted into the oral cavity from the salivary glands (5/6 bats positive by immunohistochemistry and RT-qPCR) or tongue (3/4 bats positive by immunohistochemistry) and swallowed with saliva. Virus could not be isolated from any of the seven faecal pellets, suggesting the lyssavirus detected in faeces is not infectious. Lyssavirus detection in the majority of faecal pellets of infected bats shows that this novel material should be further explored for lyssavirus prevalence studies in bats

    Pathological findings in stranded harbor porpoises (Phocoena phocoena) with special focus on anthropogenic causes

    Full text link
    peer reviewedHumans impact natural systems at an unprecedented rate. The North Sea is one of the regions in the world with the highest levels of anthropogenic activity. Here, the harbor porpoise (Phocoena phocoena) is an abundant species and is often regarded as an ecosystem sentinel. A post-mortem surveillance program was established in the Netherlands aimed at increasing knowledge of the effects of human activities on harbor porpoises. In this study, we describe the pathological findings related to anthropogenic and natural causes of death categories in 612 harbor porpoises that stranded between 2008 and 2019, and assess their relations to age, sex, season, and location. The largest anthropogenic category was bycatch (17%), with mainly juveniles affected and peak periods in March and September–October. Other, infrequently diagnosed anthropogenic causes of death were trauma (4%), largely most likely due to ship collisions, and marine debris ingestion and entanglement (0.3%). The risk of dying from anthropogenic causes was highest for juveniles. Lesions compatible with noise-induced hearing loss were investigated in carcasses which were fresh enough to do so (n = 50), with lesions apparent in two porpoises. Non-direct human-induced threats included infectious diseases, which were by far the largest cause of death category (32%), and affected mainly adults. Also, gray seal (Halichoerus grypus) attacks were a frequently assigned cause of death category (24%). There were more acute predation cases in the earlier study years, while porpoises with lesions that suggested escape from gray seal attacks were diagnosed more recently, which could suggest that porpoises adapted to this threat. Our study contributes to understanding porpoise health in response to persisting, new, emerging, and cumulative threats. Building up such knowledge is crucial for conservation management of this protected species
    • …
    corecore