198 research outputs found
The accuracy of Multi-detector row CT for the assessment of tumor invasion of the mesorectal fascia in primary rectal cancer
PURPOSE: To evaluate the accuracy of Multi-detector row CT (MDCT) for the prediction of tumor invasion of the mesorectal fascia (MRF). MATERIALS AND METHODS: A total of 35 patients with primary rectal cancer underwent preoperative staging magnetic resonance imaging (MRI) and MDCT. The tumor relationship to the MRF, expressed in 3 categories (1--tumor free MRF = tumor distance > or = 1 mm; 2--threatened = distance < 1 mm; 3--invasion = distance 0 mm) was determined on CT by two observers at patient level and at different anatomical locations. A third expert reader evaluated the MRF tumor relationship on MRI, which served as reference standard. Receiver operating characteristic curves (ROC-curves) and areas under these curves (AUC) were calculated. The inter-observer agreement of CT was determined by using linear weighted kappa statistics. RESULTS: The AUC of CT for MRF invasion was 0.71 for observer 1 and 0.62 for observer 2. The inter-observer agreement was kappa = 0.34. The performance of CT at mid-high rectal levels was statistically significant better compared to low anterior (obs.1: AUC = 0.88 vs. 0.50; obs 2: AUC = 0.84 vs. 0.31; P < or = 0.040). CONCLUSION: Multi-detector row CT has a poor accuracy for predicting MRF invasion in low-anterior located tumors.The accuracy of CT significantly improves for tumors in the mid-high rectum. There is a high inconsistency among readers
Preoperative rectal cancer staging with phased-array MR
<p>Abstract</p> <p>Background</p> <p>We retrospectively reviewed magnetic resonance (MR) images of 96 patients with diagnosis of rectal cancer to evaluate tumour stage (T stage), involvement of mesorectal fascia (MRF), and nodal metastasis (N stage).</p> <p>Our gold standard was histopathology.</p> <p>Methods</p> <p>All studies were performed with 1.5-T MR system (Symphony; Siemens Medical System, Erlangen, Germany) by using a phased-array coil. Our population was subdivided into two groups: the first one, formed by patients at T1-T2-T3, N0, M0 stage, whose underwent MR before surgery; the second group included patients at Tx N1 M0 and T3-T4 Nx M0 stage, whose underwent preoperative MR before neoadjuvant chemoradiation therapy and again 4-6 wks after the end of the treatment for the re-staging of disease.</p> <p>Our gold standard was histopathology.</p> <p>Results</p> <p>MR showed 81% overall agreement with histological findings for T and N stage prediction; for T stage, this rate increased up to 95% for pts of group I (48/96), while for group II (48/96) it decreased to 75%.</p> <p>Preoperative MR prediction of histologically involved MRF resulted very accurate (sensitivity 100%; specificity 100%) also after chemoradiation (sensitivity 100%; specificity 67%).</p> <p>Conclusions</p> <p>Phased-array MRI was able to clearly estimate the entire mesorectal fat and surrounding pelvic structures resulting the ideal technique for local preoperative rectal cancer staging.</p
Correction to. Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting
Objectives: To update the 2012 ESGAR consensus guidelines on the acquisition, interpretation and reporting of magnetic resonance imaging (MRI) for clinical staging and restaging of rectal cancer. Methods Fourteen abdominal imaging experts from the European Society of Gastrointestinal and Abdominal Radiology (ESGAR) participated in a consensus meeting, organised according to an adaptation of the RAND-UCLA Appropriateness Method. Two independent (non-voting) Chairs facilitated the meeting. 246 items were scored (comprising 229 items from the previous 2012 consensus and 17 additional items) and classified as ‘appropriate’ or ‘inappropriate’ (defined by ≥ 80 % consensus) or uncertain (defined by < 80 % consensus).
Results: Consensus was reached for 226 (92 %) of items. From these recommendations regarding hardware, patient preparation, imaging sequences and acquisition, criteria for MR imaging evaluation and reporting structure were constructed. The main additions to the 2012 consensus include recommendations regarding use of diffusion-weighted imaging, criteria for nodal staging and a recommended structured report template.
Conclusions: These updated expert consensus recommendations should be used as clinical guidelines for primary staging and restaging of rectal cancer using MRI
Follow-up after radiological intervention in oncology: ECIO-ESOI evidence and consensus-based recommendations for clinical practice
Interventional radiology plays an important and increasing role in cancer treatment. Follow-up is important to be able
to assess treatment success and detect locoregional and distant recurrence and recommendations for follow-up are
needed. At ECIO 2018, a joint ECIO-ESOI session was organized to establish follow-up recommendations for oncologic
intervention in liver, renal, and lung cancer. Treatments included thermal ablation, TACE, and TARE. In total five topics
were evaluated: ablation in colorectal liver metastases (CRLM), TARE in CRLM, TACE and TARE in HCC, ablation in renal
cancer, and ablation in lung cancer. Evaluated modalities were FDG-PET-CT, CT, MRI, and (contrast-enhanced)
ultrasound. Prior to the session, five experts were selected and performed a systematic review and presented
statements, which were voted on in a telephone conference prior to the meeting by all panelists. These statements
were presented and discussed at the ECIO-ESOI session at ECIO 2018. This paper presents the recommendations that
followed from these initiatives. Based on expert opinions and the available evidence, follow-up schedules were
proposed for liver cancer, renal cancer, and lung cancer. FDG-PET-CT, CT, and MRI are the recommended modalities,
but one should beware of false-positive signs of residual tumor or recurrence due to inflammation early after the
intervention. There is a need for prospective preferably multicenter studies to validate new techniques and new
response criteria. This paper presents recommendations that can be used in clinical practice to perform the follow-up
of patients with liver, lung, and renal cancer who were treated with interventional locoregional therapies
Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO):a randomised, open-label, phase 3 trial
BACKGROUND: Systemic relapses remain a major problem in locally advanced rectal cancer. Using short-course radiotherapy followed by chemotherapy and delayed surgery, the Rectal cancer And Preoperative Induction therapy followed by Dedicated Operation (RAPIDO) trial aimed to reduce distant metastases without compromising locoregional control. METHODS: In this multicentre, open-label, randomised, controlled, phase 3 trial, participants were recruited from 54 centres in the Netherlands, Sweden, Spain, Slovenia, Denmark, Norway, and the USA. Patients were eligible if they were aged 18 years or older, with an Eastern Cooperative Oncology Group (ECOG) performance status of 0-1, had a biopsy-proven, newly diagnosed, primary, locally advanced rectal adenocarcinoma, which was classified as high risk on pelvic MRI (with at least one of the following criteria: clinical tumour [cT] stage cT4a or cT4b, extramural vascular invasion, clinical nodal [cN] stage cN2, involved mesorectal fascia, or enlarged lateral lymph nodes), were mentally and physically fit for chemotherapy, and could be assessed for staging within 5 weeks before randomisation. Eligible participants were randomly assigned (1:1), using a management system with a randomly varying block design (each block size randomly chosen to contain two to four allocations), stratified by centre, ECOG performance status, cT stage, and cN stage, to either the experimental or standard of care group. All investigators remained masked for the primary endpoint until a prespecified number of events was reached. Patients allocated to the experimental treatment group received short-course radiotherapy (5 × 5 Gy over a maximum of 8 days) followed by six cycles of CAPOX chemotherapy (capecitabine 1000 mg/m2 orally twice daily on days 1-14, oxaliplatin 130 mg/m2 intravenously on day 1, and a chemotherapy-free interval between days 15-21) or nine cycles of FOLFOX4 (oxaliplatin 85 mg/m2 intravenously on day 1, leucovorin [folinic acid] 200 mg/m2 intravenously on days 1 and 2, followed by bolus fluorouracil 400 mg/m2 intravenously and fluorouracil 600 mg/m2 intravenously for 22 h on days 1 and 2, and a chemotherapy-free interval between days 3-14) followed by total mesorectal excision. Choice of CAPOX or FOLFOX4 was per physician discretion or hospital policy. Patients allocated to the standard of care group received 28 daily fractions of 1·8 Gy up to 50·4 Gy or 25 fractions of 2·0 Gy up to 50·0 Gy (per physician discretion or hospital policy), with concomitant twice-daily oral capecitabine 825 mg/m2 followed by total mesorectal excision and, if stipulated by hospital policy, adjuvant chemotherapy with eight cycles of CAPOX or 12 cycles of FOLFOX4. The primary endpoint was 3-year disease-related treatment failure, defined as the first occurrence of locoregional failure, distant metastasis, new primary colorectal tumour, or treatment-related death, assessed in the intention-to-treat population. Safety was assessed by intention to treat. This study is registered with the EudraCT, 2010-023957-12, and ClinicalTrials.gov, NCT01558921, and is now complete. FINDINGS: Between June 21, 2011, and June 2, 2016, 920 patients were enrolled and randomly assigned to a treatment, of whom 912 were eligible (462 in the experimental group; 450 in the standard of care group). Median follow-up was 4·6 years (IQR 3·5-5·5). At 3 years after randomisation, the cumulative probability of disease-related treatment failure was 23·7% (95% CI 19·8-27·6) in the experimental group versus 30·4% (26·1-34·6) in the standard of care group (hazard ratio 0·75, 95% CI 0·60-0·95; p=0·019). The most common grade 3 or higher adverse event during preoperative therapy in both groups was diarrhoea (81 [18%] of 460 patients in the experimental group and 41 [9%] of 441 in the standard of care group) and neurological toxicity during adjuvant chemotherapy in the standard of care group (16 [9%] of 187 patients). Serious adverse events occurred in 177 (38%) of 460 participants in the experimental group and, in the standard of care group, in 87 (34%) of 254 patients without adjuvant chemotherapy and in 64 (34%) of 187 with adjuvant chemotherapy. Treatment-related deaths occurred in four participants in the experimental group (one cardiac arrest, one pulmonary embolism, two infectious complications) and in four participants in the standard of care group (one pulmonary embolism, one neutropenic sepsis, one aspiration, one suicide due to severe depression). INTERPRETATION: The observed decreased probability of disease-related treatment failure in the experimental group is probably indicative of the increased efficacy of preoperative chemotherapy as opposed to adjuvant chemotherapy in this setting. Therefore, the experimental treatment can be considered as a new standard of care in high-risk locally advanced rectal cancer. FUNDING: Dutch Cancer Foundation, Swedish Cancer Society, Spanish Ministry of Economy and Competitiveness, and Spanish Clinical Research Network
Liver Volumetry Plug and Play: Do It Yourself with ImageJ
AB - BACKGROUND: A small remnant liver volume is an important risk factor for posthepatectomy liver failure and can be predicted accurately by computed tomography (CT) volumetry using radiologic image analysis software. Unfortunately, this software is expensive and usually requires support by a radiologist. ImageJ is a freely downloadable image analysis software package developed by the National Institute of Health (NIH) and brings liver volumetry to the surgeon's desktop. We aimed to assess the accuracy of ImageJ for hepatic CT volumetry. METHODS: ImageJ was downloaded from http://www.rsb.info.nih.gov/ij/ . Preoperative CT scans of 15 patients who underwent liver resection for colorectal cancer liver metastases were retrospectively analyzed. Scans were opened in ImageJ; and the liver, all metastases, and the intended parenchymal transection line were manually outlined on each slice. The area of each selected region, metastasis, resection specimen, and remnant liver was multiplied by the slice thickness to calculate volume. Volumes of virtual liver resection specimens measured with ImageJ were compared with specimen weights and calculated volumes obtained during pathology examination after resection. RESULTS: There was an excellent correlation between the volumes calculated with ImageJ and the actual measured weights of the resection specimens (r(2) = 0.98, p < 0.0001). The weight/volume ratio amounted to 0.88 +/- 0.04 (standard error) and was in agreement with our earlier findings using CT-linked radiologic software. CONCLUSION: ImageJ can be used for accurate hepatic CT volumetry on a personal computer. This application brings CT volumetry to the surgeon's desktop at no expense and is particularly useful in cases of tertiary referred patients, who already have a proper CT scan on CD-ROM from the referring institution. Most likely the discrepancy between volume and weight results from exsanguination of the liver after resectio
Preoperative image-guided identification of response to neoadjuvant chemoradiotherapy in esophageal cancer (PRIDE):a multicenter observational study
BACKGROUND: Nearly one third of patients undergoing neoadjuvant chemoradiotherapy (nCRT) for locally advanced esophageal cancer have a pathologic complete response (pCR) of the primary tumor upon histopathological evaluation of the resection specimen. The primary aim of this study is to develop a model that predicts the probability of pCR to nCRT in esophageal cancer, based on diffusion-weighted magnetic resonance imaging (DW-MRI), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and (18)F-fluorodeoxyglucose positron emission tomography with computed tomography ((18)F-FDG PET-CT). Accurate response prediction could lead to a patient-tailored approach with omission of surgery in the future in case of predicted pCR or additional neoadjuvant treatment in case of non-pCR. METHODS: The PRIDE study is a prospective, single arm, observational multicenter study designed to develop a multimodal prediction model for histopathological response to nCRT for esophageal cancer. A total of 200 patients with locally advanced esophageal cancer - of which at least 130 patients with adenocarcinoma and at least 61 patients with squamous cell carcinoma - scheduled to receive nCRT followed by esophagectomy will be included. The primary modalities to be incorporated in the prediction model are quantitative parameters derived from MRI and (18)F-FDG PET-CT scans, which will be acquired at fixed intervals before, during and after nCRT. Secondary modalities include blood samples for analysis of the presence of circulating tumor DNA (ctDNA) at 3 time-points (before, during and after nCRT), and an endoscopy with (random) bite-on-bite biopsies of the primary tumor site and other suspected lesions in the esophagus as well as an endoscopic ultrasonography (EUS) with fine needle aspiration of suspected lymph nodes after finishing nCRT. The main study endpoint is the performance of the model for pCR prediction. Secondary endpoints include progression-free and overall survival. DISCUSSION: If the multimodal PRIDE concept provides high predictive performance for pCR, the results of this study will play an important role in accurate identification of esophageal cancer patients with a pCR to nCRT. These patients might benefit from a patient-tailored approach with omission of surgery in the future. Vice versa, patients with non-pCR might benefit from additional neoadjuvant treatment, or ineffective therapy could be stopped. TRIAL REGISTRATION: The article reports on a health care intervention on human participants and was prospectively registered on March 22, 2018 under ClinicalTrials.gov Identifier: NCT03474341
Diffusion-Weighted MRI for Selection of Complete Responders After Chemoradiation for Locally Advanced Rectal Cancer: A Multicenter Study
PURPOSE: In 10-24% of patients with rectal cancer who are treated with neoadjuvant chemoradiation, no residual tumor is found after surgery (ypT0). When accurately selected, these complete responders might be considered for less invasive treatments instead of standard surgery. So far, no imaging method has proven reliable. This study was designed to assess the accuracy of diffusion-weighted MRI (DWI) in addition to standard rectal MRI for selection of complete responders after chemoradiation. METHODS: A total of 120 patients with locally advanced rectal cancer from three university hospitals underwent chemoradiation followed by a restaging MRI (1.5T), consisting of standard T2W-MRI and DWI (b0-1000). Three independent readers first scored the standard MRI only for the likelihood of a complete response using a 5-point confidence score, after which the DWI images were added and the scoring was repeated. Histology (ypT0 vs. ypT1-4) was the standard reference. Diagnostic performance for selection of complete responders and interobserver agreement were compared for the two readings. RESULTS: Twenty-five of 120 patients had a complete response (ypT0). Areas under the ROC-curve for the three readers improved from 0.76, 0.68, and 0.58, using only standard MRI, to 0.8, 0.8, and 0.78 after addition of DWI (P = 0.39, 0.02, and 0.002). Sensitivity for selection of complete responders ranged from 0-40% on standard MRI versus 52-64% after addition of DWI. Specificity was equally high (89-98%) for both reading sessions. Interobserver agreement improved from kappa 0.2-0.32 on standard MRI to 0.51-0.55 after addition of DWI. CONCLUSIONS: Addition of DWI to standard rectal MRI improves the selection of complete responders after chemoradiation
Imaging standardisation in metastatic colorectal cancer: A joint EORTC-ESOI-ESGAR expert consensus recommendation
Background: Treatment monitoring in metastatic colorectal cancer (mCRC) relies on imaging to evaluate the tumour burden. Response Evaluation Criteria in Solid Tumors provide a framework on reporting and interpretation of imaging findings yet offer no guidance on a standardised imaging protocol tailored to patients with mCRC. Imaging protocol hetero-geneity remains a challenge for the reproducibility of conventional imaging end-points and is an obstacle for research on novel imaging end-points.Patients and methods: Acknowledging the recently highlighted potential of radiomics and arti-ficial intelligence tools as decision support for patient care in mCRC, a multidisciplinary, international and expert panel of imaging specialists was formed to find consensus on mCRC imaging protocols using the Delphi method.Results: Under the guidance of the European Organisation for Research and Treatment of Cancer (EORTC) Imaging and Gastrointestinal Tract Cancer Groups, the European Society of Oncologic Imaging (ESOI) and the European Society of Gastrointestinal and Abdominal Radiology (ESGAR), the EORTC-ESOI-ESGAR core imaging protocol was identified.Conclusion: This consensus protocol attempts to promote standardisation and to diminish variations in patient preparation, scan acquisition and scan reconstruction. We anticipate that this standardisation will increase reproducibility of radiomics and artificial intelligence studies and serve as a catalyst for future research on imaging end-points. For ongoing and future mCRC trials, we encourage principal investigators to support the dissemination of these im-aging standards across recruiting centres. (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Evolution of clinical nature, treatment and survival of locally recurrent rectal cancer: Comparative analysis of two national cross-sectional cohorts
BACKGROUND: In the Netherlands, use of neoadjuvant radiotherapy for rectal cancer declined after guideline revision in 2014. This decline is thought to affect the clinical nature and treatability of locally recurrent rectal cancer (LRRC). Therefore, this study compared two national cross-sectional cohorts before and after the guideline revision with the aim to determine the changes in treatment and survival of LRRC patients over time. METHODS: Patients who underwent resection of primary rectal cancer in 2011 (n = 2094) and 2016 (n = 2855) from two nationwide cohorts with a 4-year follow up were included. Main outcomes included time to LRRC, synchronous metastases at time of LRRC diagnosis, intention of treatment and 2-year overall survival after LRRC. RESULTS: Use of neoadjuvant (chemo)radiotherapy for the primary tumour decreased from 88.5% to 60.0% from 2011 to 2016. The 3-year LRRC rate was not significantly different with 5.1% in 2011 (n = 114, median time to LRRC 16 months) and 6.3% in 2016 (n = 202, median time to LRRC 16 months). Synchronous metastasis rate did not significantly differ (27.2% vs 33.7%, p = 0.257). Treatment intent of the LRRC shifted towards more curative treatment (30.4% vs. 47.0%, p = 0.009). In the curatively treated group, two-year overall survival after LRRC diagnoses increased from 47.5% to 78.7% (p = 0.013). CONCLUSION: Primary rectal cancer patients in 2016 were treated less often with neoadjuvant (chemo)radiotherapy, while LRRC rates remained similar. Those who developed LRRC were more often candidate for curative intent treatment compared to the 2011 cohort, and survival after curative intent treatment also improved substantially
- …