318 research outputs found

    Plasmodium vivax Adherence to Placental Glycosaminoglycans

    Get PDF
    BACKGROUND: Plasmodium vivax infections seldom kill directly but do cause indirect mortality by reducing birth weight and causing abortion. Cytoadherence and sequestration in the microvasculature are central to the pathogenesis of severe Plasmodium falciparum malaria, but the contribution of cytoadherence to pathology in other human malarias is less clear. METHODOLOGY: The adherence properties of P. vivax infected red blood cells (PvIRBC) were evaluated under static and flow conditions. PRINCIPAL FINDINGS: P. vivax isolates from 33 patients were studied. None adhered to immobilized CD36, ICAM-1, or thrombospondin, putative ligands for P. falciparum vascular cytoadherence, or umbilical vein endothelial cells, but all adhered to immobilized chondroitin sulphate A (CSA) and hyaluronic acid (HA), the receptors for adhesion of P. falciparum in the placenta. PvIRBC also adhered to fresh placental cells (N = 5). Pre-incubation with chondroitinase prevented PvIRBC adherence to CSA, and reduced binding to HA, whereas preincubation with hyaluronidase prevented adherence to HA, but did not reduce binding to CSA significantly. Pre-incubation of PvIRBC with soluble CSA and HA reduced binding to the immobilized receptors and prevented placental binding. PvIRBC adhesion was prevented by pre-incubation with trypsin, inhibited by heparin, and reduced by EGTA. Under laminar flow conditions the mean (SD) shear stress reducing maximum attachment by 50% was 0.06 (0.02) Pa but, having adhered, the PvIRBC could then resist detachment by stresses up to 5 Pa. At 37 °C adherence began approximately 16 hours after red cell invasion with maximal adherence at 30 hours. At 39 °C adherence began earlier and peaked at 24 hours. SIGNIFICANCE: Adherence of P. vivax-infected erythrocytes to glycosaminoglycans may contribute to the pathogenesis of vivax malaria and lead to intrauterine growth retardation

    Acquisition of growth-inhibitory antibodies against blood-stage Plasmodium falciparum

    Get PDF
    Background Antibodies that inhibit the growth of blood-stage Plasmodium falciparum may play an important role in acquired and vaccine-induced immunity in humans. However, the acquisition and activity of these antibodies is not well understood. Methods We tested dialysed serum and purified immunoglobulins from Kenyan children and adults for inhibition of P. falciparum blood-stage growth in vitro using different parasite lines. Serum antibodies were measured by ELISA to blood-stage parasite antigens, extracted from P. falciparum schizonts, and to recombinant merozoite surface protein 1 (42 kDa C-terminal fragment, MSP1-42). Results Antibodies to blood-stage antigens present in schizont protein extract and to recombinant MSP1-42 significantly increased with age and were highly correlated. In contrast, growth-inhibitory activity was not strongly associated with age and tended to decline marginally with increasing age and exposure, with young children demonstrating the highest inhibitory activity. Comparison of growth-inhibitory activity among samples collected from the same population at different time points suggested that malaria transmission intensity influenced the level of growth-inhibitory antibodies. Antibodies to recombinant MSP1-42 were not associated with growth inhibition and high immunoglobulin G levels were poorly predictive of inhibitory activity. The level of inhibitory activity against different isolates varied. Conclusions Children can acquire growth-inhibitory antibodies at a young age, but once they are acquired they do not appear to be boosted by on-going exposure. Inhibitory antibodies may play a role in protection from early childhood malaria

    Antibodies to a Full-Length VAR2CSA Immunogen Are Broadly Strain-Transcendent but Do Not Cross-Inhibit Different Placental-Type Parasite Isolates

    Get PDF
    The high molecular weight, multidomain VAR2CSA protein mediating adhesion of Plasmodium falciparum-infected erythrocytes in the placenta is the leading candidate for a pregnancy malaria vaccine. However, it has been difficult so far to generate strong and consistent adhesion blocking antibody responses against most single-domain VAR2CSA immunogens. Recent advances in expression of the full-length recombinant protein showed it binds with much greater specificity and affinity to chondroitin sulphate A (CSA) than individual VAR2CSA domains. This raises the possibility that a specific CSA binding pocket(s) is formed in the full length antigen and could be an important target for vaccine development. In this study, we compared the immunogenicity of a full-length VAR2CSA recombinant protein containing all six Duffy binding-like (DBL) domains to that of a three-domain construct (DBL4-6) in mice and rabbits. Animals immunized with either immunogen acquired antibodies reacting with several VAR2CSA individual domains by ELISA, but antibody responses against the highly conserved DBL4 domain were weaker in animals immunized with full-length DBL1-6 recombinant protein compared to DBL4-6 recombinant protein. Both immunogens induced cross-reactive antibodies to several heterologous CSA-binding parasite lines expressing different VAR2CSA orthologues. However, antibodies that inhibited adhesion of parasites to CSA were only elicited in rabbits immunized with full-length immunogen and inhibition was restricted to the homologous CSA-binding parasite. These findings demonstrate that partial and full-length VAR2CSA immunogens induce cross-reactive antibodies, but inhibitory antibody responses to full-length immunogen were highly allele-specific and variable between animal species

    Super-Resolution Dissection of Coordinated Events during Malaria Parasite Invasion of the Human Erythrocyte

    Get PDF
    Erythrocyte invasion by the merozoite is an obligatory stage in Plasmodium parasite infection and essential to malaria disease progression. Attempts to study this process have been hindered by the poor invasion synchrony of merozoites from the only in vitro culture-adapted human malaria parasite, Plasmodium falciparum. Using fluorescence, three-dimensional structured illumination, and immunoelectron microscopy of filtered merozoites, we analyze cellular and molecular events underlying each discrete step of invasion. Monitoring the dynamics of these events revealed that commitment to the process is mediated through merozoite attachment to the erythrocyte, triggering all subsequent invasion events, which then proceed without obvious checkpoints. Instead, coordination of the invasion process involves formation of the merozoite-erythrocyte tight junction, which acts as a nexus for rhoptry secretion, surface-protein shedding, and actomyosin motor activation. The ability to break down each molecular step allows us to propose a comprehensive model for the molecular basis of parasite invasion. © 2011 Elsevier Inc

    Relevant Assay to Study the Adhesion of Plasmodium falciparum-Infected Erythrocytes to the Placental Epithelium

    Get PDF
    In placental malaria, Plasmodium falciparum-infected erythrocytes adhere to the apical plasma membrane of the placental epithelium, triggering an impairment of placental function detrimental to the fetus. The design of anti-adhesion intervention strategies requires a detailed understanding of the mechanisms involved. However, most adhesion assays lack in vivo relevance and are hardly quantitative. Here, we describe a flow cytometry-based adhesion assay that is fully relevant by using apical epithelial plasma membrane vesicles as the adhesion matrix, and being applicable to infected erythrocytes directly isolated from patients. Adhesion is measured both as the percentage of pathogens bound to epithelial membrane vesicles as well as the mean number of vesicles bound per infected erythrocytes. We show that adhesins alternative to those currently identified could be involved. This demonstrates the power of this assay to advance our understanding of epithelial adhesion of infected erythrocytes and in the design of intervention strategies

    Declining malaria transmission differentially impacts on the maintenance of humoral immunity to Plasmodium falciparum in children

    Get PDF
    BACKGROUND We investigated the poorly understood impact of declining malaria transmission on maintenance of antibodies to P. falciparum merozoite antigens and infected erythrocytes (IEs), including functional immunity. METHODS In a 3-year longitudinal cohort of 300 Kenyan children, antibodies to different merozoite AMA1 and MSP2 alleles, IE surface antigens, and antibody functional activities were quantified. RESULTS Over a period in which malaria transmission declined markedly, AMA1 and MSP2 antibodies decreased substantially; estimated half-lives of antibody duration were 0.8 and 1-3 years, respectively. However, 69-74% of children maintained their sero-positivity to AMA1 alleles and 42-52% to MSP2 alleles. Levels and prevalence of anti-merozoite antibodies were consistently associated with increasing age and concurrent parasitaemia. Antibodies promoting opsonic phagocytosis of merozoites declined rapidly (half-life 0.15 years). In contrast, complement-fixing antibodies to merozoites did not decline and antibodies to IE surface antigens expressing virulent phenotypes were much better maintained (half-life 4-10 years). CONCLUSIONS A decline in malaria transmission is associated with reduction in naturally-acquired immunity. However, loss of immunity is not universal; some key functional responses and antibodies to IEs were better maintained and these may continue to provide some protection. Findings have implications for malaria surveillance and control measures and informing vaccine development

    Impact of combining intermittent preventive treatment with home management of malaria in children less than 10 years in a rural area of Senegal: a cluster randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current malaria control strategies recommend (i) early case detection using rapid diagnostic tests (RDT) and treatment with artemisinin combination therapy (ACT), (ii) pre-referral rectal artesunate, (iii) intermittent preventive treatment and (iv) impregnated bed nets. However, these individual malaria control interventions provide only partial protection in most epidemiological situations. Therefore, there is a need to investigate the potential benefits of integrating several malaria interventions to reduce malaria prevalence and morbidity.</p> <p>Methods</p> <p>A randomized controlled trial was carried out to assess the impact of combining seasonal intermittent preventive treatment in children (IPTc) with home-based management of malaria (HMM) by community health workers (CHWs) in Senegal. Eight CHWs in eight villages covered by the Bonconto health post, (South Eastern part of Senegal) were trained to diagnose malaria using RDT, provide prompt treatment with artemether-lumefantrine for uncomplicated malaria cases and pre-referral rectal artesunate for complicated malaria occurring in children under 10 years. Four CHWs were randomized to also administer monthly IPTc as single dose of sulphadoxine-pyrimethamine (SP) plus three doses of amodiaquine (AQ) in the malaria transmission season, October and November 2010. Primary end point was incidence of single episode of malaria attacks over 8 weeks of follow up. Secondary end points included prevalence of malaria parasitaemia, and prevalence of anaemia at the end of the transmission season. Primary analysis was by intention to treat. The study protocol was approved by the Senegalese National Ethical Committee (approval 0027/MSP/DS/CNRS, 18/03/2010).</p> <p>Results</p> <p>A total of 1,000 children were enrolled. The incidence of malaria episodes was 7.1/100 child months at risk [95% CI (3.7-13.7)] in communities with IPTc + HMM compared to 35.6/100 child months at risk [95% CI (26.7-47.4)] in communities with only HMM (aOR = 0.20; 95% CI 0.09-0.41; <it>p </it>= 0.04). At the end of the transmission season, malaria parasitaemia prevalence was lower in communities with IPTc + HMM (2.05% versus 4.6% <it>p </it>= 0.03). Adjusted for age groups, sex, <it>Plasmodium falciparum </it>carriage and prevalence of malnutrition, IPTc + HMM showed a significant protective effect against anaemia (aOR = 0.59; 95% CI 0.42-0.82; <it>p </it>= 0.02).</p> <p>Conclusion</p> <p>Combining IPTc and HMM can provide significant additional benefit in preventing clinical episodes of malaria as well as anaemia among children in Senegal.</p

    Antibodies That Induce Phagocytosis of Malaria Infected Erythrocytes: Effect of HIV Infection and Correlation with Clinical Outcomes

    Get PDF
    HIV infection increases the burden of disease of malaria in pregnancy, in part by impairing the development of immunity. We measured total IgG and phagocytic antibodies against variant surface antigens of placental-type CS2 parasites in 187 secundigravidae (65% HIV infected). In women with placental malaria infection, phagocytic antibodies to CS2VSA were decreased in the presence of HIV (p = 0.011) and correlated positively with infant birth weight (coef = 3.57, p = 0.025), whereas total IgG to CS2VSA did not. Phagocytic antibodies to CS2VSA are valuable tools to study acquired immunity to malaria in the context of HIV co-infection. Secundigravidae may be an informative group for identification of correlates of immunity
    • …
    corecore