287 research outputs found

    Ecosystem (dis)benefits arising from formal and informal land-use in Manchester (UK); a case study of urban soil characteristics associated with local green space management

    Get PDF
    Urban soils are subject to anthropogenic influences and, reciprocally, provide benefits and dis-benefits to human wellbeing; for example carbon storage, nutrient cycling and the regulation trace element and contaminant mobility. Collective stewardship of urban green commons provides contemporary examples of the diversity of uses and management of green space in cities and represents a growing movement in user participation in, and awareness of, the importance of urban ecological health. Exploring the range of social-ecological benefits exemplified in the urban environment has generally focused on above-ground processes, with few studies examining the potential for (dis)benefits arising from edaphic characteristics of collectively-managed spaces. An investigation into the influence of formal and informal green space management on carbon fluxes and heavy metal concentrations in urban soils was carried out in Manchester (UK) finding that carbon storage in soils of collectively managed urban green commons (7.15 ±1.42 kg C m⁻²) was significantly greater than at formally managed sites (for example city parks: 5.08 ±0.69 kg C m⁻²), though the latter exhibited reduced losses through CO2 emission. Variation in heavy metal concentrations and mobility were likewise observed, exemplified by the acidification of surface soils by leaf litter at orchard sites, and the resultant increase in the mobility of lead (Pb) and zinc (Zn). The results of this study indicate the importance of small-scale contemporary urban green space management on selected ecosystem services provided by the limited soil resource of cities. Thus, a greater consideration of the effects of horticultural and amenity activities with regards to soil quality/functionality is required to ensure available urban green commons retain or increase their ecological quality over time

    Cookie cutter cooperatives in the KwaZulu-Natal school nutrition programme.

    Get PDF
    This article examines an initiative by the KwaZulu-Natal provincial government to increase the income opportunities emerging from the school feeding programme. Since the inception of the programme, small medium and micro enterprises (SMMEs) had been enlisted to provide schools with ingredients. However in 2006, the KwaZulu-Natal provincial government replaced some SMMEs with women’s cooperatives. By 2009, 12 of the original 42 cooperatives had collapsed, and some schools being serviced by these cooperatives complained of unreliable delivery of ingredients. This article examines the interface between policy and implementation through a case study of four cooperatives in one district. Our data suggests that some cooperatives struggled to take root as a result of a variety of factors which we discuss under the themes of viability, membership and skills. The top down creation of these cooperatives according to inflexible guidelines also resulted in significant problems

    The use of ambulatory blood pressure measurement

    Get PDF
    Measurement of ambulatory blood pressure is recommended by the National Institute for Health and Care Excellence guidelines to confirm the diagnosis of hypertension in the UK. This article describes the use of ambulatory devices, and discusses the benefits and disadvantages of their use in clinical practice

    A major locus confers triclabendazole resistance in Fasciola hepatica and shows dominant inheritance

    Get PDF
    Fasciola hepatica infection is responsible for substantial economic losses in livestock worldwide and poses a threat to human health in endemic areas. The mainstay of control in livestock and the only drug licenced for use in humans is triclabendazole (TCBZ). TCBZ resistance has been reported on every continent and threatens effective control of fasciolosis in many parts of the world. To date, understanding the genetic mechanisms underlying TCBZ resistance has been limited to studies of candidate genes, based on assumptions of their role in drug action. Taking an alternative approach, we combined a genetic cross with whole-genome sequencing to localise a ~3.2Mbp locus within the 1.2Gbp F. hepatica genome that confers TCBZ resistance. We validated this locus independently using bulk segregant analysis of F. hepatica populations and showed that it is the target of drug selection in the field. We genotyped individual parasites and tracked segregation and reassortment of SNPs to show that TCBZ resistance exhibits Mendelian inheritance and is conferred by a dominant allele. We defined gene content within this locus to pinpoint genes involved in membrane transport, (e.g. ATP-binding cassette family B, ABCB1), transmembrane signalling and signal transduction (e.g. GTP-Ras-adenylyl cyclase and EGF-like protein), DNA/RNA binding and transcriptional regulation (e.g. SANT/Myb-like DNA-binding domain protein) and drug storage and sequestration (e.g. fatty acid binding protein, FABP) as prime candidates for conferring TCBZ resistance. This study constitutes the first experimental cross and genome-wide approach for any heritable trait in F. hepatica and is key to understanding the evolution of drug resistance in Fasciola spp. to inform deployment of efficacious anthelmintic treatments in the field

    Clinical Outcomes and Survival Following Treatment of Metastatic Castrate-Refractory Prostate Cancer With Docetaxel Alone or With Strontium-89, Zoledronic Acid, or Both

    Get PDF
    Importance Bony metastatic castrate-refractory prostate cancer (CRPC) has a poor prognosis and high morbidity. Zoledronic acid (ZA) is commonly combined with docetaxel in practice but lacks evidence that combining is effective, and strontium-89 (Sr89) is generally used palliatively in patients unfit for chemotherapy. Phase 2 analysis of the TRAPEZE trial confirmed combining the agents was safe and feasible, and the objectives of phase 3 include assessment of the treatments on survival. Objective To determine clinical effectiveness and cost-effectiveness of combining docetaxel, ZA, and Sr89, all having palliative benefits and used in bony metastatic CRPC to control bone symptoms and, for docetaxel, to prolong survival. Design, Setting, and Participants The TRAPEZE trial is a 2 × 2 factorial trial comparing docetaxel alone or with ZA, Sr89, or both. A cohort of 757 participants were recruited between February 2005 and February 2012 from hospitals in the United Kingdom. Overall, 169 participants (45%) had received palliative radiotherapy, and the median (IQR) prostate-specific antigen level was 146 (51-354). Follow-ups were performed for at least 12 months. Interventions Up to 10 cycles of docetaxel alone; docetaxel with ZA; docetaxel with a single Sr89 dose after 6 cycles; or docetaxel with both ZA and Sr89. Main Outcomes and Measures Primary outcomes included clinical progression-free survival (CPFS) (pain progression, skeletal-related events [SREs], or death) and cost-effectiveness. Secondary outcomes included SRE-free interval, pain progression–free interval, total SREs, and overall survival (OS). Results Overall, of 757 participants, 349 (46%) completed docetaxel treatment. Median (IQR) age was 68 (63-73) years. Clinical progression-free survival did not reach statistical significance for either Sr89 or ZA. Cox regression analysis adjusted for all stratification variables showed benefit of Sr89 on CPFS (hazard ratio [HR], 0.85; 95% CI, 0.73-0.99; P = .03) and confirmed no effect of ZA (HR, 0.98; 95% CI, 0.85-1.14; P = .81); ZA had a significant effect on SRE-free interval (HR, 0.78; 95% CI, 0.65-0.95; P = .01). For OS, there was no effect of either Sr89 (HR, 0.92; 95% CI, 0.79-1.08; P = 0.34) or ZA (HR, 0.99; 95% CI, 0.84-1.16; P = 0.91). Conclusions and Relevance Strontium-89 combined with docetaxel improved CPFS but did not improve OS, SRE-free interval, or total SREs; ZA did not improve CPFS or OS but did significantly improve median SRE-free interval and reduced total SREs by around one-third, suggesting a role as postchemotherapy maintenance therapy

    Breast cancer risk prediction using a polygenic risk score in the familial setting: a prospective study from the Breast Cancer Family Registry and kConFab.

    Get PDF
    PURPOSE: This study examined the utility of sets of single-nucleotide polymorphisms (SNPs) in familial but non-BRCA-associated breast cancer (BC). METHODS: We derived a polygenic risk score (PRS) based on 24 known BC risk SNPs for 4,365 women from the Breast Cancer Family Registry and Kathleen Cuningham Consortium Foundation for Research into Familial Breast Cancer familial BC cohorts. We compared scores for women based on cancer status at baseline; 2,599 women unaffected at enrollment were followed-up for an average of 7.4 years. Cox proportional hazards regression was used to analyze the association of PRS with BC risk. The BOADICEA risk prediction algorithm was used to measure risk based on family history alone. RESULTS: The mean PRS at baseline was 2.25 (SD, 0.35) for affected women and was 2.17 (SD, 0.35) for unaffected women from combined cohorts (P < 10-6). During follow-up, 205 BC cases occurred. The hazard ratios for continuous PRS (per SD) and upper versus lower quintiles were 1.38 (95% confidence interval: 1.22-1.56) and 3.18 (95% confidence interval: 1.84-5.23) respectively. Based on their PRS-based predicted risk, management for up to 23% of women could be altered. CONCLUSION: Including BC-associated SNPs in risk assessment can provide more accurate risk prediction than family history alone and can influence recommendations for cancer screening and prevention modalities for high-risk women.Genet Med 19 1, 30-35.National Institutes of HealthThis is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/gim.2016.4

    SGCE missense mutations that cause myoclonus-dystonia syndrome impair epsilon-sarcoglycan trafficking to the plasma membrane: modulation by ubiquitination and torsinA

    Get PDF
    Myoclonus-dystonia syndrome (MDS) is a genetically heterogeneous disorder characterized by myoclonic jerks often seen in combination with dystonia and psychiatric co-morbidities and epilepsy. Mutations in the gene encoding epsilon-sarcoglycan (SGCE) have been found in some patients with MDS. SGCE is a maternally imprinted gene with the disease being inherited in an autosomal dominant pattern with reduced penetrance upon maternal transmission. In the central nervous system, epsilon-sarcoglycan is widely expressed in neurons of the cerebral cortex, basal ganglia, hippocampus, cerebellum and the olfactory bulb. epsilon-Sarcoglycan is located at the plasma membrane in neurons, muscle and transfected cells. To determine the effect of MDS-associated mutations on the function of epsilon-sarcoglycan we examined the biosynthesis and trafficking of wild-type and mutant proteins in cultured cells. In contrast to the wild-type protein, disease-associated epsilon-sarcoglycan missense mutations (H36P, H36R and L172R) produce proteins that are undetectable at the cell surface and are retained intracellularly. These mutant proteins become polyubiquitinated and are rapidly degraded by the proteasome. Furthermore, torsinA, that is mutated in DYT1 dystonia, a rare type of primary dystonia, binds to and promotes the degradation of epsilon-sarcoglycan mutants when both proteins are co-expressed. These data demonstrate that some MDS-associated mutations in SGCE impair trafficking of the mutant protein to the plasma membrane and suggest a role for torsinA and the ubiquitin proteasome system in the recognition and processing of misfolded epsilon-sarcoglycan

    A major locus confers triclabendazole resistance in Fasciola hepatica and shows dominant inheritance

    Get PDF
    From PLOS via Jisc Publications RouterHistory: received 2022-10-02, accepted 2022-12-22, collection 2023-01, epub 2023-01-26Acknowledgements: We are grateful for the advice and sequencing services provided by staff within the Centre for Genomic Research, University of Liverpool. A list of ABC transporter genes was provided courtesy of Professor Aaron Maule, Dr Erin McCammick and Dr Nathan Clarke, Queen’s University Belfast. We would like to acknowledge the support of the Animal and Plant Health Agency, APHA. We would like to extend our gratitude to the farmers who provided faecal samples from sheep, and the veterinarians in private practice who collected these for us. We would like to acknowledge the help of Ms Alice Balard, Mrs Catherine Hartley, Mr Nigel Jones, Mrs Helen Smith, and Professor Rob Smith for their assistance with maintenance of snail colonies, animal care and sample collection within the Institute of Infection, Veterinary and Ecological Sciences at the University of Liverpool.Publication status: PublishedFunder: Biotechnology and Biological Sciences Research Council; funder-id: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/1002480/1Funder: Biotechnology and Biological Sciences Research Council; funder-id: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/P001912/1Fasciola hepatica infection is responsible for substantial economic losses in livestock worldwide and poses a threat to human health in endemic areas. The mainstay of control in livestock and the only drug licenced for use in humans is triclabendazole (TCBZ). TCBZ resistance has been reported on every continent and threatens effective control of fasciolosis in many parts of the world. To date, understanding the genetic mechanisms underlying TCBZ resistance has been limited to studies of candidate genes, based on assumptions of their role in drug action. Taking an alternative approach, we combined a genetic cross with whole-genome sequencing to localise a ~3.2Mbp locus within the 1.2Gbp F. hepatica genome that confers TCBZ resistance. We validated this locus independently using bulk segregant analysis of F. hepatica populations and showed that it is the target of drug selection in the field. We genotyped individual parasites and tracked segregation and reassortment of SNPs to show that TCBZ resistance exhibits Mendelian inheritance and is conferred by a dominant allele. We defined gene content within this locus to pinpoint genes involved in membrane transport, (e.g. ATP-binding cassette family B, ABCB1), transmembrane signalling and signal transduction (e.g. GTP-Ras-adenylyl cyclase and EGF-like protein), DNA/RNA binding and transcriptional regulation (e.g. SANT/Myb-like DNA-binding domain protein) and drug storage and sequestration (e.g. fatty acid binding protein, FABP) as prime candidates for conferring TCBZ resistance. This study constitutes the first experimental cross and genome-wide approach for any heritable trait in F. hepatica and is key to understanding the evolution of drug resistance in Fasciola spp. to inform deployment of efficacious anthelmintic treatments in the field
    corecore