239 research outputs found

    Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-depleted Murine Embryonic Stem Cells

    Get PDF
    Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation signal and a much stronger decrease in acetylation over time, which is often not reflected in an concordant expression change. These results shed light on the complexity of the relationship between histone acetylation and gene expression and are a step forward to dissect the multilayer regulatory mechanisms that determine stem cell fate.Comment: accepted at PLoS Computational Biolog

    Genetic determinants of co-accessible chromatin regions in activated T cells across humans.

    Get PDF
    Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Changes in neuronal activation patterns in response to androgen deprivation therapy: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A common treatment option for men with prostate cancer is androgen deprivation therapy (ADT). However, men undergoing ADT may experience physical side effects, changes in quality of life and sometimes psychiatric and cognitive side effects.</p> <p>Methods</p> <p>In this study, hormone naïve patients without evidence of metastases with a rising PSA were treated with nine months of ADT. Functional magnetic resonance imaging (fMRI) of the brain during three visuospatial tasks was performed at baseline prior to treatment and after nine months of ADT in five subjects. Seven healthy control patients, underwent neuroimaging at the same time intervals.</p> <p>Results</p> <p>ADT patients showed reduced, task-related BOLD-fMRI activation during treatment that was not observed in control subjects. Reduction in activation in right parietal-occipital regions from baseline was observed during recall of the spatial location of objects and mental rotation.</p> <p>Conclusions</p> <p>Findings, while preliminary, suggest that ADT reduces task-related neural activation in brain regions that are involved in mental rotation and accurate recall of spatial information.</p

    Deprescribing interventions and their impact on medication adherence in community-dwelling older adults with polypharmacy: a systematic review

    Get PDF
    Background: Polypharmacy, and the associated adverse drug events such as non-adherence to prescriptions, is a common problem for elderly people living with multiple comorbidities. Deprescribing, i.e. the gradual withdrawal from medications with supervision by a healthcare professional, is regarded as a means of reducing adverse effects of multiple medications including non-adherence. This systematic review examines the evidence of deprescribing as an effective strategy for improving medication adherence amongst older, community dwelling adults. Methods: A mixed methods review was undertaken. Eight bibliographic database and two clinical trials registers were searched between May and December 2017. Results were double screened in accordance with pre-defined inclusion/exclusion criteria related to polypharmacy, deprescribing and adherence in older, community dwelling populations. The Mixed Methods Appraisal Tool (MMAT) was used for quality appraisal and an a priori data collection instrument was used. For the quantitative studies, a narrative synthesis approach was taken. The qualitative data was analysed using framework analysis. Findings were integrated using a mixed methods technique. The review was performed in accordance with the PRISMA reporting statement. Results: A total of 22 original studies were included, of which 12 were RCTs. Deprescribing with adherence as an outcome measure was identified in randomised controlled trials (RCTs), observational and cohort studies from 13 countries between 1996 and 2017. There were 17 pharmacy-led interventions; others were led by General Practitioners (GP) and nurses. Four studies demonstrated an overall reduction in medications of which all studies corresponded with improved adherence. A total of thirteen studies reported improved adherence of which 5 were RCTs. Adherence was reported as a secondary outcome in all but one study. Conclusions: There is insufficient evidence to show that deprescribing improves medication adherence. Only 13 studies (of 22) reported adherence of which only 5 were randomised controlled trials. Older people are particularly susceptible to non-adherence due to multi-morbidity associated with polypharmacy. Bio-psycho-social factors including health literacy and multi-disciplinary team interventions influence adherence. The authors recommend further study into the efficacy and outcomes of medicines management interventions. A consensus on priority outcome measurements for prescribed medications is indicated

    Investigation of Griffithsin's Interactions with Human Cells Confirms Its Outstanding Safety and Efficacy Profile as a Microbicide Candidate

    Get PDF
    Many natural product-derived lectins such as the red algal lectin griffithsin (GRFT) have potent in vitro activity against viruses that display dense clusters of oligomannose N-linked glycans (NLG) on their surface envelope glycoproteins. However, since oligomannose NLG are also found on some host proteins it is possible that treatment with antiviral lectins may trigger undesirable side effects. For other antiviral lectins such as concanavalin A, banana lectin and cyanovirin-N (CV-N), interactions between the lectin and as yet undescribed cellular moieties have been reported to induce undesirable side effects including secretion of inflammatory cytokines and activation of host T-cells. We show that GRFT, unlike CV-N, binds the surface of human epithelial and peripheral blood mononuclear cells (PBMC) through an exclusively oligosaccharide-dependent interaction. In contrast to several other antiviral lectins however, GRFT treatment induces only minimal changes in secretion of inflammatory cytokines and chemokines by epithelial cells or human PBMC, has no measureable effect on cell viability and does not significantly upregulate markers of T-cell activation. In addition, GRFT appears to retain antiviral activity once bound to the surface of PBMC. Finally, RNA microarray studies show that, while CV-N and ConA regulate expression of a multitude of cellular genes, GRFT treatment effects only minimal alterations in the gene expression profile of a human ectocervical cell line. These studies indicate that GRFT has an outstanding safety profile with little evidence of induced toxicity, T-cell activation or deleterious immunological consequence, unique attributes for a natural product-derived lectin

    Effect of Audiovisual Training on Monaural Spatial Hearing in Horizontal Plane

    Get PDF
    The article aims to test the hypothesis that audiovisual integration can improve spatial hearing in monaural conditions when interaural difference cues are not available. We trained one group of subjects with an audiovisual task, where a flash was presented in parallel with the sound and another group in an auditory task, where only sound from different spatial locations was presented. To check whether the observed audiovisual effect was similar to feedback, the third group was trained using the visual feedback paradigm. Training sessions were administered once per day, for 5 days. The performance level in each group was compared for auditory only stimulation on the first and the last day of practice. Improvement after audiovisual training was several times higher than after auditory practice. The group trained with visual feedback demonstrated a different effect of training with the improvement smaller than the group with audiovisual training. We conclude that cross-modal facilitation is highly important to improve spatial hearing in monaural conditions and may be applied to the rehabilitation of patients with unilateral deafness and after unilateral cochlear implantation
    corecore