709 research outputs found
16 x 25 Ge:Ga Detector Arrays for FIFI LS
We are developing two-dimensional 16 x 25 pixel detector arrays of both
unstressed and stressed Ge:Ga photoconductive detectors for far-infrared
astronomy from SOFIA. The arrays, based on earlier 5 x 5 detector arrays used
on the KAO, will be for our new instrument, the Far Infrared Field Imaging Line
Spectrometer (FIFI LS). The unstressed Ge:Ga detector array will cover the
wavelength range from 40 to 120 microns, and the stressed Ge:Ga detector array
from 120 to 210 microns. The detector arrays will be operated with multiplexed
integrating amplifiers with cryogenic readout electronics located close to the
detector arrays. The design of the stressed detector array and results of
current measurements on several prototype 16 pixel linear arrays are reported.
They demonstrate the feasibility of the current concept. ***This paper does not
include Figures due to astro-ph size limitations. Please download entire file
at http://fifi-ls.mpe-garching.mpg.de/spie.det.ps.gz ***Comment: 8 pages, SPIE Proceedings, Astronomical Telescopes and
Instrumentation 200
Formation of diluted IIIâV nitride thin films by N ion implantation
iluted IIIâNââVâËâ alloys were successfully synthesized by nitrogen implantation into GaAs,InP, and AlyGa1âyAs. In all three cases the fundamental band-gap energy for the ion beam synthesized IIIâNââVâËâ alloys was found to decrease with increasing N implantation dose in a manner similar to that observed in epitaxially grownGaNâAs1âx and InNâPâËâalloys. In GaNâAsâËâ the highest value of x (fraction of âactiveâ substitutional N on As sublattice) achieved was 0.006. It was observed that NAs is thermally unstable at temperatures higher than 850â°C. The highest value of x achieved in InNâPâËâ was higher, 0.012, and the NP was found to be stable to at least 850â°C. In addition, the N activation efficiency in implantedInNâPâËâ was at least a factor of 2 higher than that in GaNâAsâËâ under similar processing conditions. AlyGa1âyNâAsâËâ had not been made previously by epitaxial techniques. N implantation was successful in producing AlyGa1âyNâAsâËâalloys. Notably, the band gap of these alloys remains direct, even above the value of y (y>0.44) where the band gap of the host material is indirect.This work was supported by the ââPhotovoltaic Materials
Focus Areaââ in the DOE Center of Excellence for the Synthesis
and Processing of Advanced Materials, Office of Science,
Office of Basic Energy Sciences, Division of Materials
Sciences under U.S. Department of Energy Contract No. DE-ACO3-76SF00098. The work at UCSD was partially supported
by Midwest Research Institute under subcontractor
No. AAD-9-18668-7 from NREL
Stressed detector arrays for airborne astronomy
The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed
Cryogenic light detectors with enhanced performance for rare events physics
We have developed and tested a new way of coupling bolometric light detectors
to scintillating crystal bolometers based upon simply resting the light
detector on the crystal surface, held in position only by gravity. This
straightforward mounting results in three important improvements: (1) it
decreases the amount of non-active materials needed to assemble the detector,
(2) it substantially increases the light collection efficiency by minimizing
the light losses induced by the mounting structure, and (3) it enhances the
thermal signal induced in the light detector thanks to the extremely weak
thermal link to the thermal bath. We tested this new technique with a 16 cm
Ge light detector with thermistor readout sitting on the surface of a large
TeO bolometer. The light collection efficiency was increased by greater
than 50\% compared to previously tested alternative mountings. We obtained a
baseline energy resolution on the light detector of 20~eV RMS that, together
with increased light collection, enabled us to obtain the best vs
discrimination ever obtained with massive TeO crystals. At
the same time we achieved rise and decay times of 0.8 and 1.6 ms, respectively.
This superb performance meets all of the requirements for the CUPID (CUORE
Upgrade with Particle IDentification) experiment, which is a 1-ton
scintillating bolometer follow up to CUORE.Comment: 6 pages, 4 figure
Analysis of repetitive DNA distribution patterns in the Tribolium castaneum genome
Approximately 30% of the Tribolium castaneum genome is comprised of repetitive DNA. These repeats accumulate in certain regions in the assembled T. castaneum genome, these regions might be derived from the large blocks of pericentric heterochromatin in Tribolium chromosomes
Diluted II-VI Oxide Semiconductors with Multiple Band Gaps
We report the realization of a new multi-band-gap semiconductor. The highly
mismatched alloy Zn1-yMnyOxTe1-x has been synthesized using the combination of
oxygen ion implantation and pulsed laser melting. Incorporation of small
quantities of isovalent oxygen leads to the formation of a narrow,
oxygen-derived band of extended states located within the band gap of the
Zn1-yMnyTe host. When only 1.3% of Te atoms is replaced with oxygen in a
Zn0.88Mn0.12Te crystal (with band gap of 2.32 eV) the resulting band structure
consists of two direct band gaps with interband transitions at ~1.77 eV and 2.7
eV. This remarkable modification of the band structure is well described by the
band anticrossing model in which the interactions between the oxygen-derived
band and the conduction band are considered. With multiple band gaps that fall
within the solar energy spectrum, Zn1-yMnyOxTe1-x is a material perfectly
satisfying the conditions for single-junction photovoltaics with the potential
for power conversion efficiencies surpassing 50%.Comment: 12 pages, 4 figure
Stressed Ge:Ga photoconductors for space-based astronomy. (Is there life beyond 120 micron)
Information is given in viewgraph form. Information is given on the characteristics of stressed Ge:Ga, a spring type stress cavity, mounting hardware, materials parameters affecting dark current, and the behavior of low dark current stressed Ge:Ga. It is concluded that detectors exist today for background-limited detection at 200 microns, that researchers are narrowing in on the significant parameters that effect dark current in stressed photoconductors, that these findings may be applied to other photoconductor materials, and that some creative problem solving for an ionizing effect reset mechanism is needed
Predicting the response of a submillimeter bolometer to cosmic rays
Bolometers designed to detect. submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model
Two major cuticular proteins are required for assembly of horizontal laminae and vertical pore canals in rigid cuticle of Tribolium castaneum
The insect exoskeleton is composed of cuticle primarily formed from structural cuticular proteins (CPs) and the polysaccharide chitin. Two CPs, TcCPR27 and TcCPR18, are major proteins present in the elytron (highly sclerotized and pigmented modified forewing) as well as the pronotum (dorsal sclerite of the prothorax) and ventral abdominal cuticle of the red flour beetle, Tribolium castaneum. Both CPs belong to the CPR family, which includes proteins that have an amino acid sequence motif known as the Rebers & Riddiford (R&R) consensus sequence. Injection of double-stranded RNA (dsRNA) for TcCPR27 and TcCPR18 resulted in insects with shorter, wrinkled, warped and less rigid elytra than those from control insects. To gain a more comprehensive understanding of the roles of CPs in cuticle assembly, we analyzed for the precise localization of TcCPR27 and the ultrastructural architecture of cuticle in TcCPR27- and TcCPR18-deficient elytra. Transmission electron microscopic analysis combined with immunodetection using goldlabeled secondary antibody revealed that TcCPR27 is present in dorsal elytral procuticle both in the horizontal laminae and in vertical pore canals. dsRNA-mediated RNA interference (RNAi) of TcCPR27 resulted in abnormal electron-lucent laminae and pore canals in elytra except for the boundary between these two structures in which electron-dense molecule(s) apparently accumulated. Insects subjected to RNAi for TcCPR18 also had disorganized laminae and pore canals in the procuticle of elytra. Similar ultrastructural defects were also observed in other body wall regions with rigid cuticle such as the thorax and legs of adult T. castaneum. TcCPR27 and TcCPR18 are required for proper formation of the horizontal chitinous laminae and vertical pore canals that are critical for formation and stabilization of rigid adult cuticle
The Albedo, Size, and Density of Binary Kuiper Belt Object (47171) 1999 TC36
We measured the system-integrated thermal emission of the binary Kuiper Belt
Object 1999 TC36 at wavelengths near 24 and 70 microns using the Spitzer space
telescope. We fit these data and the visual magnitude using both the Standard
Thermal Model and thermophysical models. We find that the effective diameter of
the binary is 405 km, with a range of 350 -- 470 km, and the effective visible
geometric albedo for the system is 0.079 with a range of 0.055 -- 0.11. The
binary orbit, magnitude contrast between the components, and system mass have
been determined from HST data (Margot et al., 2004; 2005a; 2005b). Our
effective diameter, combined with that system mass, indicate an average density
for the objects of 0.5 g/cm3, with a range 0.3 -- 0.8 g/cm3. This density is
low compared to that of materials expected to be abundant in solid bodies in
the trans-Neptunian region, requiring 50 -- 75% of the interior of 1999 TC36 be
taken up by void space. This conclusion is not greatly affected if 1999 TC36 is
``differentiated'' (in the sense of having either a rocky or just a non-porous
core). If the primary is itself a binary, the average density of that
(hypothetical) triple system would be in the range 0.4 -- 1.1 g/cm3, with a
porosity in the range 15 -- 70%.Comment: ApJ, in press (May, 2006
- âŠ