4,243 research outputs found
On the use of internal state variables in thermoviscoplastic constitutive equations
The general theory of internal state variables are reviewed to apply it to inelastic metals in use in high temperature environments. In this process, certain constraints and clarifications will be made regarding internal state variables. It is shown that the Helmholtz free energy can be utilized to construct constitutive equations which are appropriate for metallic superalloys. Internal state variables are shown to represent locally averaged measures of dislocation arrangement, dislocation density, and intergranular fracture. The internal state variable model is demonstrated to be a suitable framework for comparison of several currently proposed models for metals and can therefore be used to exhibit history dependence, nonlinearity, and rate as well as temperature sensitivity
A Vector-Integration-to-Endpoint Model for Performance of Viapoint Movements
Viapoint (VP) movements are movements to a desired point that are constrained to pass through an intermediate point. Studies have shown that VP movements possess properties, such as smooth curvature around the VP, that are not explicable by treating VP movements as strict concatenations of simpler point-to-point (PTP) movements. Such properties have led some theorists to propose whole-trajectory optimization models, which imply that the entire trajectory is pre-computed before movement initiation. This paper reports new experiments conducted to systematically compare VP with PTP trajectories. Analyses revealed a statistically significant early directional deviation in VP movements but no associated curvature change. An explanation of this effect is offered by extending the Vector-Integration-To-Endpoint (VITE) model (Bullock and Grossberg, 1988), which postulates that voluntary movement trajectories emerge as internal gating signals control the integration of continuously computed vector commands based on the evolving, perceptible difference between desired and actual position variables. The model explains the observed trajectories of VP and PTP movements as emergent properties of a dynamical system that does not precompute entire trajectories before movement initiation. The new model includes a working memory and a stage sensitive to time-to-contact information. These cooperate to control serial performance. The structural and functional relationships proposed in the model are consistent with available data on forebrain physiology and anatomy.Office of Naval Research (N00014-92-J-1309, N00014-93-1-1364, N0014-95-1-0409
Theory and applications of supercycled symmetry-based recoupling sequences in solid-state NMR
We present the theoretical principles of supercycled symmetry-based recoupling sequences in solid-state magic-angle-spinning NMR. We discuss the construction procedure of the SR26 pulse sequence, which is a particularly robust sequence for double-quantum homonuclear dipole-dipole recoupling. The supercycle removes destructive higher-order average Hamiltonian terms and renders the sequence robust over long time intervals. We demonstrate applications of the SR26 sequence to double-quantum spectroscopy, homonuclear spin counting, and determination of the relative orientations of chemical shift anisotropy tensors
Partial nonlinear reciprocity breaking through ultrafast dynamics in a random photonic medium
We demonstrate that ultrafast nonlinear dynamics gives rise to reciprocity
breaking in a random photonic medium. Reciprocity breaking is observed via the
suppression of coherent backscattering, a manifestation of weak localization of
light. The effect is observed in a pump-probe configuration where the pump
induces an ultrafast step-change of the refractive index during the dwell time
of the probe light in the material. The dynamical suppression of coherent
backscattering is reproduced well by a multiple scattering Monte Carlo
simulation. Ultrafast reciprocity breaking provides a distinct mechanism in
nonlinear optical media which opens up avenues for the active manipulation of
mesoscopic transport, random lasers, and photon localization.Comment: 5 pages, 4 figure
Ferromagnetic Domain Structure of La0.78Ca0.22MnO3 Single Crystals
The magneto-optical technique has been employed to observe spontaneous
ferromagnetic domain structures in La0.78Ca0.22MnO3 single crystals. The
magnetic domain topology was found to be correlated with the intrinsic twin
structure of the investigated crystals. With decreasing temperature the regular
network of ferromagnetic domains undergoes significant changes resulting in
apparent rotation of the domain walls in the temperature range of 70-150 K. The
apparent rotation of the domain walls can be understood in terms of the
Jahn-Teller deformation of the orthorhombic unit cell, accompanied by
additional twinning.Comment: 7 pages, 5 figures, to be published in PR
On Secure Implementation of an IHE XUA-Based Protocol for Authenticating Healthcare Professionals
The importance of the Electronic Health Record (EHR) has been addressed in recent years by governments and institutions.Many large scale projects have been funded with the aim to allow healthcare professionals to consult patients data. Properties such as confidentiality, authentication and authorization are the key for the success for these projects. The Integrating the Healthcare Enterprise (IHE) initiative promotes the coordinated use of established standards for authenticated and secure EHR exchanges among clinics and hospitals. In particular, the IHE integration profile named XUA permits to attest user identities by relying on SAML assertions, i.e. XML documents containing authentication statements. In this paper, we provide a formal model for the secure issuance of such an assertion. We first specify the scenario using the process calculus COWS and then analyse it using the model checker CMC. Our analysis reveals a potential flaw in the XUA profile when using a SAML assertion in an unprotected network. We then suggest a solution for this flaw, and model check and implement this solution to show that it is secure and feasible
Defect-unbinding and the Bose-glass transition in layered superconductors
The low-field Bose-glass transition temperature in heavy-ion irradiated
Bi_2Sr_2CaCu_2O_8+d increases progressively with increasing density of
irradiation-induced columnar defects, but saturates for densities in excess of
1.5 x10^9 cm^-2. The maximum Bose-glass temperature corresponds to that above
which diffusion of two-dimensional pancake vortices between different vortex
lines becomes possible, and above which the ``line-like'' character of vortices
is lost. We develop a description of the Bose-glass line that is in excellent
quantitative agreement with the experimental line obtained for widely different
values of track density and material parameters.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
- ā¦