1,414 research outputs found

    Activated chemoreceptor arrays remain intact and hexagonally packed

    Get PDF
    Bacterial chemoreceptors cluster into exquisitively sensitive, tunable, highly ordered, polar arrays. While these arrays serve as paradigms of cell signalling in general, it remains unclear what conformational changes transduce signals from the periplasmic tips, where attractants and repellents bind, to the cytoplasmic signalling domains. Conflicting reports support and contest the hypothesis that activation causes large changes in the packing arrangement of the arrays, up to and including their complete disassembly. Using electron cryotomography, here we show that in Caulobacter crescentus, chemoreceptor arrays in cells grown in different media and immediately after exposure to the attractant galactose all exhibit the same 12 nm hexagonal packing arrangement, array size and other structural parameters. Ī”cheB and Ī”cheR mutants mimicking attractant- or repellent-bound states prior to adaptation also show the same lattice structure. We conclude that signal transduction and amplification must be accomplished through only small, nanoscale conformational changes

    Growth and Localization of Polyhydroxybutyrate Granules in Ralstonia eutropha

    Get PDF
    The bacterium Ralstonia eutropha forms cytoplasmic granules of polyhydroxybutyrate that are a source of biodegradable thermoplastic. While much is known about the biochemistry of polyhydroxybutyrate production, the cell biology of granule formation and growth remains unclear. Previous studies have suggested that granules form either in the inner membrane, on a central scaffold, or in the cytoplasm. Here we used electron cryotomography to monitor granule genesis and development in 3 dimensions (3-D) in a near-native, ā€œfrozen-hydratedā€ state in intact Ralstonia eutropha cells. Neither nascent granules within the cell membrane nor scaffolds were seen. Instead, granules of all sizes resided toward the center of the cytoplasm along the length of the cell and exhibited a discontinuous surface layer more consistent with a partial protein coating than either a lipid mono- or bilayer. Putatively fusing granules were also seen, suggesting that small granules are continually generated and then grow and merge. Together, these observations support a model of biogenesis wherein granules form in the cytoplasm coated not by phospholipid but by protein. Previous thin-section electron microscopy (EM), fluorescence microscopy, and atomic force microscopy (AFM) results to the contrary may reflect both differences in nucleoid condensation and specimen preparation-induced artifacts

    Assembly and Architecture of Gram-Positive and -Negative Cell Walls

    Get PDF
    The cell wall, a porous mesh-like structure, provides shape and physical protection for bacteria. At the atomic level, it is composed of peptidoglycan (PG), a polymer of stiff glycan strands cross-linked by short, flexible peptides. However, at the mesoscale, multiple models for the organization of PG have been put forth, distinguished by glycan strands parallel to the cell surface (the so-called "layered'' model) or perpendicular (the ā€œscaffoldā€ model). To test these models, and to resolve the mechanical properties of PG, we have built and simulated at an atomic scale patches of both Gram-positive and negative cell walls in different organizations up to 50 nanometers in size. In the case of Gram-positive PG, molecular dynamics simulations of the layered model are found to elucidate the mechanisms behind a distinct curling effect observed in three-dimensional electron cryo-tomography images of fragmented cell walls. For Gram-negative PG, simulations of patches with different average-glycan-strand lengths reveal an anisotropic elasticity, in good agreement with atomic-force microscopy experiments. Insights from the simulations reveal how mesoscopic and macroscopic properties of a ubiquitous bacterial ultrastructure arise from its atomic-scale interactions and organization

    Architecture and assembly of the Gram-positive cell wall

    Get PDF
    The bacterial cell wall is a mesh polymer of peptidoglycan ā€“ linear glycan strands cross-linked by flexible peptides ā€“ that determines cell shape and provides physical protection. While the glycan strands in thin ā€˜Gram-negativeā€™ peptidoglycan are known to run circumferentially around the cell, the architecture of the thicker ā€˜Gram-positiveā€™ form remains unclear. Using electron cryotomography, here we show that Bacillus subtilis peptidoglycan is a uniformly dense layer with a textured surface. We further show it rips circumferentially, curls and thickens at free edges, and extends longitudinally when denatured. Molecular dynamics simulations show that only atomic models based on the circumferential topology recapitulate the observed curling and thickening, in support of an ā€˜inside-to-outsideā€™ assembly process. We conclude that instead of being perpendicular to the cell surface or wrapped in coiled cables (two alternative models), the glycan strands in Gram-positive cell walls run circumferentially around the cell just as they do in Gram-negative cells. Together with providing insights into the architecture of the ultimate determinant of cell shape, this study is important because Gram-positive peptidoglycan is an antibiotic target crucial to the viability of several important rod-shaped pathogens including Bacillus anthracis, Listeria monocytogenes, and Clostridium difficile

    In situ structure of the Caulobacter crescentus flagellar motor and visualization of binding of a CheY-homolog

    Get PDF
    Bacterial flagellar motility is controlled by the binding of CheY proteins to the cytoplasmic switch complex of the flagellar motor, resulting in changes in swimming speed or direction. Despite its importance for motor function, structural information about the interaction between effector proteins and the motor are scarce. To address this gap in knowledge, we used electron cryotomography and subtomogram averaging to visualize such interactions inside Caulobacter crescentus cells. In C. crescentus, several CheY homologs regulate motor function for different aspects of the bacterial lifestyle. We used subtomogram averaging to image binding of the CheY family protein CleD to the cytoplasmic Cring switch complex, the control center of the flagellar motor. This unambiguously confirmed the orientation of the motor switch protein FliM and the binding of a member of the CheY protein family to the outside rim of the C ring. We also uncovered previously unknown structural elaborations of the alphaproteobacterial flagellar motor, including two novel periplasmic ring structures, and the stator ring harboring eleven stator units, adding to our growing catalog of bacterial flagellar diversity

    Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane

    Get PDF
    The bacterial flagellum exemplifies a system where even small deviations from the highly regulated flagellar assembly process can abolish motility and cause negative physiological outcomes. Consequently, bacteria have evolved elegant and robust regulatory mechanisms to ensure that flagellar morphogenesis follows a defined path, with each component self-assembling to predetermined dimensions. The flagellar rod acts as a driveshaft to transmit torque from the cytoplasmic rotor to the external filament. The rod self-assembles to a defined length of ~25 nanometers. Here, we provide evidence that rod length is limited by the width of the periplasmic space between the inner and outer membranes. The length of Braun's lipoprotein determines periplasmic width by tethering the outer membrane to the peptidoglycan layer

    Giant flagellins form thick flagellar filaments in two species of marine Ī³-proteobacteria

    Get PDF
    Flagella, the primary means of motility in bacteria, are helical filaments that function as microscopic propellers composed of thousands of copies of the protein flagellin. Here, we show that many bacteria encode ā€œgiantā€ flagellins, greater than a thousand amino acids in length, and that two species that encode giant flagellins, the marine Ī³-proteobacteria Bermanella marisrubri and Oleibacter marinus, produce monopolar flagellar filaments considerably thicker than filaments composed of shorter flagellin monomers. We confirm that the flagellum from B. marisrubri is built from its giant flagellin. Phylogenetic analysis reveals that the mechanism of evolution of giant flagellins has followed a stepwise process involving an internal domain duplication followed by insertion of an additional novel insert. This work illustrates how ā€œtheā€ bacterial flagellum should not be seen as a single, idealised structure, but as a continuum of evolved machines adapted to a range of niches

    Ultrastructure and complex polar architecture of the human pathogen Campylobacter jejuni

    Get PDF
    Campylobacter jejuni is one of the most successful food-borne human pathogens. Here we use electron cryotomography to explore the ultrastructure of C. jejuni cells in logarithmically growing cultures. This provides the first look at this pathogen in a near-native state at macromolecular resolution (~5 nm). We find a surprisingly complex polar architecture that includes ribosome exclusion zones, polyphosphate storage granules, extensive collar-shaped chemoreceptor arrays, and elaborate flagellar motors

    Coarse-grained simulations of bacterial cell wall growth reveal that local coordination alone can be sufficient to maintain rod shape

    Get PDF
    Bacteria are surrounded by a peptidoglycan (PG) cell wall that must be remodeled to allow cell growth. While many structural details and properties of PG and the individual enzymes involved are known, how the process is coordinated to maintain cell integrity and rod shape is not understood. We have developed a coarse-grained method to simulate how individual transglycosylases, transpeptidases, and endopeptidases could introduce new material into an existing unilayer PG network. We find that a simple model with no enzyme coordination fails to maintain cell wall integrity and rod shape. We then iteratively analyze failure modes and explore different mechanistic hypotheses about how each problem might be overcome by the macromolecules involved. In contrast to a current theory, which posits that long MreB filaments are needed to coordinate PG insertion sites, we find that local coordination of enzyme activities in individual complexes can be sufficient to maintain cell integrity and rod shape. We also present possible molecular explanations for the existence of monofunctional transpeptidases and glycosidases (glycoside hydrolases), trimeric peptide crosslinks, cell twisting during growth, and synthesis of new strands in pairs
    • ā€¦
    corecore