19 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Targeted gene sanger sequencing should remain the first-tier genetic test for children suspected to have the five common X-linked inborn errors of immunity

    Get PDF
    DATA AVAILABILITY STATEMENT : The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.To address inborn errors of immunity (IEI) which were underdiagnosed in resource-limited regions, our centre developed and offered free genetic testing for the most common IEI by Sanger sequencing (SS) since 2001. With the establishment of The Asian Primary Immunodeficiency (APID) Network in 2009, the awareness and definitive diagnosis of IEI were further improved with collaboration among centres caring for IEI patients from East and Southeast Asia. We also started to use whole exome sequencing (WES) for undiagnosed cases and further extended our collaboration with centres from South Asia and Africa. With the increased use of Next Generation Sequencing (NGS), we have shifted our diagnostic practice from SS to WES. However, SS was still one of the key diagnostic tools for IEI for the past two decades. Our centre has performed 2,024 IEI SS genetic tests, with in-house protocol designed specifically for 84 genes, in 1,376 patients with 744 identified to have disease-causing mutations (54.1%). The high diagnostic rate after just one round of targeted gene SS for each of the 5 common IEI (X-linked agammaglobulinemia (XLA) 77.4%, Wiskott–Aldrich syndrome (WAS) 69.2%, X-linked chronic granulomatous disease (XCGD) 59.5%, X-linked severe combined immunodeficiency (XSCID) 51.1%, and X-linked hyper-IgM syndrome (HIGM1) 58.1%) demonstrated targeted gene SS should remain the first-tier genetic test for the 5 common X-linked IEI.The Hong Kong Society for Relief of Disabled Children and Jeffrey Modell Foundation.http://www.frontiersin.org/Immunologyam2023Paediatrics and Child Healt

    Chikungunya virus nsP4 RNA-dependent RNA polymerase core domain displays detergent-sensitive primer extension and terminal adenylyltransferase activities

    No full text
    Chikungunya virus (CHIKV) is an important arboviral infectious agent in tropical and subtropical regions, often causing persistent and debilitating disease. The viral enzyme non-structural protein 4 (nsP4), as RNA-dependent RNA polymerase (RdRP), catalyzes the formation of negative-sense, genomic and subgenomic viral RNAs. Here we report a truncated nsP4 construct that is soluble, stable and purified recombinantly from Escherichia coli. Sequence analyses and homology modelling indicate that all necessary RdRP elements are included. Hydrogen/deuterium exchange with mass spectrometry was used to analyze solvent accessibility and flexibility of subdomains. Fluorophore-conjugated RNA ligands were designed and screened by using fluorescence anisotropy to select a suitable substrate for RdRP assays. Assay trials revealed that nsP4 core domain is conditionally active upon choice of detergent species, and carries out both primed extension and terminal adenylyltransferase activities. The polymerization assay can be further developed to screen for antiviral compounds in vitro.MOE (Min. of Education, S’pore)Accepted versio

    The Synergistic Effect of Functional Status and Comorbidity Burden on Mortality: A 16-Year Survival Analysis

    No full text
    <div><p>Objectives</p><p>The relationship between disability and comorbidity on mortality is widely perceived as additive in clinical models of frailty.</p><p>Design</p><p>National data were retrospectively extracted from medical records of community hospital.</p><p>Data Sources</p><p>There were of 12,804 acutely-disabled patients admitted for inpatient rehabilitation in Singapore rehabilitation community hospitals from 1996 through 2005 were followed up for death till 31 December 2011.</p><p>Outcome Measure</p><p>Cox proportional-hazards regression to assess the interaction of comorbidity and disability at discharge on all-cause mortality.</p><p>Results</p><p>During a median follow-up of 10.9 years, there were 8,565 deaths (66.9%). The mean age was 73.0 (standard deviation: 11.5) years. Independent risk factors of mortality were higher comorbidity (p<0.001), severity of disability at discharge (p<0.001), being widowed (adjusted hazard ratio [aHR]: 1.38, 95% confidence interval [CI]:1.25–1.53), low socioeconomic status (aHR:1.40, 95%CI:1.29–1.53), discharge to nursing home (aHR:1.14, 95%CI:1.05–1.22) and re-admission into acute care (aHR:1.54, 95%CI:1.45–1.65). In the main effects model, those with high comorbidity had an aHR = 2.41 (95%CI:2.13–2.72) whereas those with total disability had an aHR = 2.28 (95%CI:2.12–2.46). In the interaction model, synergistic interaction existed between comorbidity and disability (p<0.001) where those with high comorbidity and total disability had much higher aHR = 6.57 (95%CI:5.15–8.37).</p><p>Conclusions</p><p>Patients with greater comorbidity and disability at discharge, discharge to nursing home or re-admission into acute care, lower socioeconomic status and being widowed had higher mortality risk. Our results identified predictive variables of mortality that map well onto the frailty cascade model. Increasing comorbidity and disability interacted synergistically to increase mortality risk.</p></div

    Social demographics by death status at time of censoring and bivariate model of all-cause mortality for hazard ratio.

    No full text
    a<p>P-value: Cox-proportional hazard model: stratified by age group (18–64, 65 and above), year of admission, gender, primary diagnosis at admission (stroke, fracture, amputation, lower limb arthroplasty, falls, others).</p><p>Social demographics by death status at time of censoring and bivariate model of all-cause mortality for hazard ratio.</p
    corecore