22 research outputs found

    Pathogenic NR2F1 variants cause a developmental ocular phenotype recapitulated in a mutant mouse model.

    Get PDF
    Pathogenic NR2F1 variants cause a rare autosomal dominant neurodevelopmental disorder referred to as the Bosch-Boonstra-Schaaf Optic Atrophy Syndrome. Although visual loss is a prominent feature seen in affected individuals, the molecular and cellular mechanisms contributing to visual impairment are still poorly characterized. We conducted a deep phenotyping study on a cohort of 22 individuals carrying pathogenic NR2F1 variants to document the neurodevelopmental and ophthalmological manifestations, in particular the structural and functional changes within the retina and the optic nerve, which have not been detailed previously. The visual impairment became apparent in early childhood with small and/or tilted hypoplastic optic nerves observed in 10 cases. High-resolution optical coherence tomography imaging confirmed significant loss of retinal ganglion cells with thinning of the ganglion cell layer, consistent with electrophysiological evidence of retinal ganglion cells dysfunction. Interestingly, for those individuals with available longitudinal ophthalmological data, there was no significant deterioration in visual function during the period of follow-up. Diffusion tensor imaging tractography studies showed defective connections and disorganization of the extracortical visual pathways. To further investigate how pathogenic NR2F1 variants impact on retinal and optic nerve development, we took advantage of an Nr2f1 mutant mouse disease model. Abnormal retinogenesis in early stages of development was observed in Nr2f1 mutant mice with decreased retinal ganglion cell density and disruption of retinal ganglion cell axonal guidance from the neural retina into the optic stalk, accounting for the development of optic nerve hypoplasia. The mutant mice showed significantly reduced visual acuity based on electrophysiological parameters with marked conduction delay and decreased amplitude of the recordings in the superficial layers of the visual cortex. The clinical observations in our study cohort, supported by the mouse data, suggest an early neurodevelopmental origin for the retinal and optic nerve head defects caused by NR2F1 pathogenic variants, resulting in congenital vision loss that seems to be non-progressive. We propose NR2F1 as a major gene that orchestrates early retinal and optic nerve head development, playing a key role in the maturation of the visual system

    The clinical and genetic spectrum of autosomal-recessive TOR1A-related disorders.

    Get PDF
    In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated to torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with TOR1A-AMC5 have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with fetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71% with higher mortality in males. Death occurred at a median age of 1.2 months (1 week - 9 years) due to respiratory failure, cardiac arrest, or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival

    Palmoplantar keratoderma with deafness phenotypic variability in a patient with an inherited GJB2 frameshift variant and novel missense variant

    No full text
    Abstract Background Variants in the GJB2 gene encoding the gap junction protein connexin‐26 (Cx26) can cause autosomal recessive nonsyndromic hearing loss or a variety of phenotypically variable autosomal dominant disorders that effect skin and hearing, such as palmoplantar keratoderma (PPK) with deafness and keratitis–ichthyosis–deafness (KID) syndrome. Here, we report a patient with chronic mucocutaneous candidiasis, hyperkeratosis with resorption of the finger tips, profound bilateral sensorineural hearing loss, and normal hair and ocular examination. Exome analysis identified a novel missense variant in GJB2 (NM_004004.5:c.101T>A, p.Met34Lys) that was inherited from a mosaic unaffected parent in the setting of a well‐reported GJB2 loss of function variant (NM_004004.5:c.35delG, p.Gly12Valfs*2) on the other allele. Method Rat epidermal keratinocytes were transfected with cDNA encoding wildtype Cx26 and/or the Met34Lys mutant of Cx26. Fixed cells were immunolabeled in order to assess the subcellular location of the Cx26 mutant and cell images were captured. Results Expression in rat epidermal keratinocytes revealed that the Met34Lys mutant was retained in the endoplasmic reticulum, unlike wildtype Cx26, and failed to reach the plasma membrane to form gap junctions. Additionally, the Met34Lys mutant acted dominantly to wildtype Cx26, restricting its delivery to the cell surface. Conclusion Overall, we show the p.Met34Lys variant is a novel dominant acting variant causing PPK with deafness. The presence of a loss a function variant on the other allele creates a more severe clinical phenotype, with some features reminiscent of KID syndrome

    A virtual reality orientation and mobility test for inherited retinal degenerations : testing a proof-of-concept after gene therapy

    No full text
    Purpose: To test the ability of a virtual reality (VR) orientation and mobility (O&M) protocol to serve a measure of functional vision for patients with inherited retinal degenerations (IRDs). Methods: A VR-O&M protocol designed using a commercially available VR hardware was tested in normally sighted control subjects (n=7; ages 10-35yo; Average 22.5yo) and patients with RPE65-associated Leber Congenital Amaurosis (n=3; ages 7-18yo; Average 12.7yo), in two of them before and after gene therapy. Patients underwent perimetry and full-field sensitivity testing. VR-O&M parameters correlated with the visual dysfunction. Results: Visual acuities in RPE65 patients were on average worse than 20/200, dark-adapted sensitivity losses >5 log units, and fields constricted between 20 degrees and 40 degrees. Before treatment, patients required similar to 1000-fold brighter environment to navigate, had at least x4 more collisions, and were slower both to orient and navigate compared to control subjects. Improvements in cone- (by 1-2 L.u.) and rod-mediated (by >4 L.u.) sensitivities post-treatment led to fewer collisions (at least by half) at similar to 100-fold dimmer luminances, and to x4 times faster navigation times. Conclusion: This study provides proof-of-concept data in support for the use of VR-O&M systems to quantify the impact that the visual dysfunction and improvement of vision following treatments has on functional vision in IRDs. The VR-O&M was useful in potentially challenging scenarios such as in pediatric patients with severe IRDs. Translational Relevance: A VR-O&M test will provide much needed flexibility, both in its deployment as well as in the possibility to test various attributes of vision that may be impacted by gene therapy in the setting of translational studies. Precis: This study provides proof-of-concept data in support for the use of a virtual reality orientation and mobility test to quantify the impact of the disease and of treatments thereof on functional vision in inherited retinal degenerations

    Fleck-like lesions in <i>CEP290-associated</i> leber congenital amaurosis: a case series

    No full text
    To provide a detailed ophthalmic phenotype of a small cohort of patients with Leber Congenital Amaurosis (LCA) caused by mutations in CEP290 (CEP290-LCA) with a focus on elucidating the origin of yellow-white lesions observed in 30% of patients with this condition. This is a retrospective review of records of five patients with CEP290-LCA. Patients had comprehensive ophthalmic evaluations. Visual function was assessed with full-field electroretinograms (ffERGs) and full-field sensitivity testing (FST). Multimodal imaging was performed with spectral domain optical coherence tomography (SD-OCT), fundus autofluorescence (FAF) with short- (SW) and near-infrared (NIR) excitation wavelengths. All patients showed relative structural preservation of the foveal and near midperipheral retina separated by a pericentral area of photoreceptor loss. Yellow-white, fleck-like lesions in an annular distribution around the near midperiphery co-localized with hyperreflective lesions on SD-OCT. The lesions located between the inner segment ellipsoid signal and the apical retinal pigment epithelium (RPE). The inner retina was normal. Longitudinal observations in one of the patients indicates the abnormalities may represent an intermediate stage in the degenerative process between the near normal appearing retina previously documented in young CEP290-LCA patients and the pigmentary retinopathy observed along the same region in older individuals. We speculate that fleck-like lesions in CEP290-LCA correspond to malformed, rudimentary or degenerated, including shed, photoreceptor outer segments. The topography and possible origin of the abnormalities may inform the planning of evolving genetic therapies for this disease.</p

    Pathogenic variants in CDH11 impair cell adhesion and cause Teebi hypertelorism syndrome

    No full text
    Teebi hypertelorism syndrome (THS; OMIM 145420) is a rare craniofacial disorder characterized by hypertelorism, prominent forehead, short nose with broad or depressed nasal root. Some cases of THS have been attributed to SPECC1L variants. Homozygous variants in CDH11 truncating the transmembrane and intracellular domains have been implicated in Elsahy–Waters syndrome (EWS; OMIM 211380) with hypertelorism. We report THS due to CDH11 heterozygous missense variants on 19 subjects from 9 families. All affected residues in the extracellular region of Cadherin-11 (CHD11) are highly conserved across vertebrate species and classical cadherins. Six of the variants that cluster around the EC2–EC3 and EC3–EC4 linker regions are predicted to affect Ca2+ binding that is required for cadherin stability. Two of the additional variants [c.164G \u3e C, p.(Trp55Ser) and c.418G \u3e A, p.(Glu140Lys)] are also notable as they are predicted to directly affect trans-homodimer formation. Immunohistochemical study demonstrates that CDH11 is strongly expressed in human facial mesenchyme. Using multiple functional assays, we show that five variants from the EC1, EC2–EC3 linker, and EC3 regions significantly reduced the cell-substrate trans adhesion activity and one variant from EC3–EC4 linker results in changes in cell morphology, focal adhesion, and migration, suggesting dominant negative effect. Characteristic features in this cohort included depressed nasal root, cardiac and umbilical defects. These features distinguished this phenotype from that seen in SPECC1L-related hypertelorism syndrome and CDH11-related EWS. Our results demonstrate heterozygous variants in CDH11, which decrease cell–cell adhesion and increase cell migratory behavior, cause a form of THS, as termed CDH11-related THS
    corecore