6 research outputs found

    Low frequency noise due to magnetic inhomogeneities in submicron FeCoB/MgO/FeCoB magnetic tunnel junctions

    Full text link
    We report on room temperature low frequency noise due to magnetic inhomogeneities/domain walls (MI/DWs) in elliptic submicron FeCoB/MgO/FeCoB magnetic tunnel junctions with an area between 0.0245 and 0.0675{\mu}m2. In the smaller area junctions we found an unexpected random telegraph noise (RTN1), deeply in the parallel state, possibly due to stray field induced MI/DWs in the hard layer. The second noise source (RTN2) is observed in the antiparallel state for the largest junctions. Strong asymmetry of RTN2 and of related resistance steps with current indicate spin torque acting on the MI/DWs in the soft layer at current densities below 5x10^5 A/cm2.Comment: 12 pages, 4 figure

    Magnetization reversal in sub-100nm magnetic tunnel junctions with ultrathin MgO barrier biased along hard axis

    Full text link
    We report on room temperature magnetoresistance and low frequency noise in sub-100nm elliptic CoFeB/MgO/CoFeB magnetic tunnel junctions with ultrathin (0.9nm) barriers. For magnetic fields applied along the hard axis, we observe current induced magnetization switching between the antiparallel and parallel alignments at DC current densities as low as 4*106A/cm2. We attribute the low value of the critical current to the influence of localized reductions in the tunnel barrier, which affects the current distribution. The analysis of random telegraph noise, which appears in the field interval near a magnetization switch, provides an estimate to the dimension of the pseudo pinholes that trigger the magnetization switching via local spin torque. Micromagnetic simulations qualitatively and quantitatively reproduce the main experimental observations
    corecore