46 research outputs found

    Regulation of proteasome assembly and activity in health and disease

    Get PDF

    Loop corrections to soft theorems in gauge theories and gravity

    Get PDF
    © The Author(s). In this paper, we study loop corrections to the recently proposed new soft theorems of Cachazo and Strominger [1], for both gravity and gauge theory amplitudes. We first review the proof of its tree-level validity based on BCFW recursion relations, which also establishes an infinite series of universals soft functions for MHV amplitudes, and a generalization to supersymmetric cases. For loop corrections, we focus on infrared finite, rational amplitudes at one loop, and apply recursion relations with boundary or double-pole contributions. For all-plus amplitudes, we prove that the subleading soft theorems are exact to all multiplicities for gauge theory and up to 12-points for gravity amplitudes. For single-minus amplitudes, while the subleading soft theorems are again exact for the minus-helicity soft leg, for plus-helicity loop corrections are required. Using recursion relations, we identify the source of such mismatch as stemming from the special contribution containing double poles, and obtain the all multiplicity one-loop corrections to the subleading soft behavior in Yang-Mills theory. We also comment on the derivation of soft theorems using BCFW recursion in arbitrary dimensions.The work of S. H is supported by Zurich Financial Services Membership and the Ambrose Monell Foundation. The work of Y-t. H is supported by the National Science Foundation Grant PHY-1314311 . The work of C.W is supported by the Science and Technology Facilities Council Consolidated Grant ST/J000469/1 String theory, gauge theory & dualit

    The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    Get PDF
    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity

    Distribution of lipids from the yolk to the tissues during development of the water python (Liasis fuscus)

    No full text
    Energy metabolism during embryonic development of snakes differs in several respects from the patterns displayed by other reptiles. There are, however, no previous reports describing the main energy source for development, the yolk lipids, in snake eggs. There is also no information on the distribution of yolk fatty acids to the tissues during snake development. In eggs of the water python (Liasis fuscus), we report that triacylglycerol, phospholipid, cholesteryl ester and free cholesterol, respectively, form 70.3%, 14.1%, 5.7% and 2.1% of the total lipid. The main polyunsaturate of the yolk lipid classes is 18:2n-6. The yolk phospholipid contains 20:4n-6 and 22:6n-3 at 13.0% and 3.6% (w/w), respectively. Approximately 10% and 30% of the initial egg lipids are respectively recovered in the residual yolk and the fat body of the hatchling. A major function of yolk lipid is, therefore, to provision the neonate with large energy reserves. The proportion of 22:6n-3 in brain phospholipid of the hatchling is 11.1% (w/w): this represents only 0.24% of the amount of 22:6n-3 originally present in the egg. This also contrasts with values for free-living avian species where the proportion of DHA in neonatal brain phospholipid is 16–19%. In the liver of the newly hatched python, triacylglycerol, phospholipid and cholesteryl ester, respectively, form 68.2%, 7.7% and 14.3% of total lipid. This contrasts with embryos of birds where cholesteryl ester forms up to 80% of total liver lipid and suggests that the mechanism of lipid transfer in the water python embryo differs in some respects from the avian situation
    corecore