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be of use in establishing the algebraic structure of potential hidden symmetries in the
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1 Introduction and conclusions

The infrared behaviour of gluon and graviton amplitudes displays a universal factorisation

into a soft and a hard contribution which makes it an interesting topic of study. As was

already noticed in the early days of quantum field theory [1, 2], the emission of a single soft

gluon or graviton yields a singular soft function linearly divergent in the soft momentum.

There is also universal behaviour at the subleading order in a soft momentum expansion

both for gluons and photons [1, 3, 4] and, as was discovered only recently, for gravitons [5].

The authors of [5] moreover related the subleading soft graviton functions to a conjectured

hidden symmetry of the quantum gravity S-matrix [6, 7] which has the form of an extended

BMS4 algebra [8–10] known from classical gravitational waves. Similar claims that the

Yang-Mills S-matrix enjoys a hidden two-dimensional Kac-Moody type symmetry were

made recently [11]. In this picture the scattering amplitudes in four-dimensional quantum

field theory are related to correlation functions of a two-dimensional quantum theory living

on the sphere at null infinity. This fascinating proposal merits further study.

The subleading soft gluon and graviton theorems were proven using modern on-shell

techniques for scattering amplitudes.1 They hold in general dimensions [14–17] and their

1See e.g. [12, 13] for a textbook treatment.

– 1 –



J
H
E
P
0
7
(
2
0
1
5
)
1
3
5

form is strongly constrained by gauge and Poincaré symmetry [18, 19]. These results are

so far restricted to tree-level. The important loop-level validity and deformations of the

theorem were studied in [20–24]. An ambitwistor string model was proposed in [25, 26]

which yields the graviton and gluon tree-level S-matrix in the form of their CHY repre-

sentation [27, 28]. In this language the soft theorems have an intriguing two-dimensional

origin in terms of corresponding limits of the vertex operators on the ambitwistor string

world-sheet [29].

Technically the soft theorems are conveniently expressed as an expansion in a small

soft scaling parameter δ multiplying the momentum of the soft particle pµ = δ qµ with

q2 = 0. Taking the soft limit of a gluon in a colour-ordered (n+ 1)-point amplitude An+1

yields the soft theorem at tree-level

lim
δ→0

An+1 =

(
1

δ
S(0)
YM(q) + S(1)

YM(q)

)
An +O(δ) , (1.1)

where An = δ(4)(
∑n

i=1 pn)An denotes the full amplitude including the momentum preserv-

ing delta-function. The soft functions S(n)
YM(q) are universal, in fact S(1)

YM(q) has the form of

a differential operator in momenta and polarisations acting on the the amplitude An. For

soft gravitons the universality even extends down to the sub-subleading order

lim
δ→0

Mn+1 =

(
1

δ
S(0)
grav(q) + S(1)

grav(q) + δ S(2)
grav(q)

)
Mn +O(δ2) . (1.2)

Now S(1)
grav is a first-order and S(2)

grav a second-order differential operator in the hard momenta

and polarisations (or equivalently in spinor helicity variables). The leading soft function

S(0)
grav has been associated [6, 7] to the Ward identity of the super-translation, while the

subleading soft function S(1)
grav to that of the Virasoro (or super-rotation) generators of

the extended BMS4 symmetry algebra. However, this subleading connection is still not

entirely established.

The soft behaviour of the S-matrix is in general connected to its symmetries. Hence

exploring the soft behaviour is a means to uncover hidden symmetries in quantum field

theories. This is particularly transparent in the soft behaviour of Goldstone bosons of

a spontaneously broken symmetry. In this situation the soft limit of a single scalar in

the theory leads to a vanishing amplitude known as Adler’s zero [30]. The emergence of

a hidden symmetry algebra from the soft behaviour of amplitudes has been beautifully

demonstrated in [31]: taking the double soft limit for two scalars reveals the algebraic

structure and yields a non-vanishing result of the form

lim
δ→0

An+2(φ
i(δq1),φ

j(δq2), 3, . . . n+ 2)

=
n+2∑

a=3

pa · (q1 − q2)

pa · (q1 + q2)
f ijKTKAn(3, . . . n+ 2) +O(δ) (1.3)

where TK is the generator of the invariant subgroup with [T i, T j ] = f ijKTK in a suitable

representation for acting on amplitudes. Using this method the authors of [31] demon-

strated that the double-soft limit of two scalars in N = 8 supergravity gives rise to the

– 2 –



J
H
E
P
0
7
(
2
0
1
5
)
1
3
5

structure constants of the hidden E7(7) symmetry algebra acting non-linearly on the scalars.

Methods for extracting double-soft limits of scalars in 4 ≤ N < 8 supergravity as well as

N = 16 supergravity in three dimensions were presented in [32]. Single soft scalar limits

were also studied as a classification tool for effective field theories in [33]. Recently, the

double-soft limits of spin 1/2 particles were studied in a series of theories and related univer-

sal double-soft behaviour could be established [34]. Of course, for fermions the single-soft

limit vanishes by statistics. Double-soft scalar and photon limits were studied very recently

for several classes of four-dimensional theories containing scalar particles in [35] using the

CHY representation [27, 28]. Interesting universal double-soft theorems were established.

In summary these results indicate that (i) double-soft limits of massless particles ex-

hibit universal behaviour going beyond the single-soft theorems, and (ii) that the double-

soft limits have the potential to exhibit the algebraic structure of underlying hidden sym-

metries of the S-matrix. These insights and results set the stage for the present analysis

where we lift the universal double-soft theorems of massless spin 0 and spin 1/2 particles

to the spin 1 and 2 cases. The central difference now lies in the non-vanishing single-soft

limits reviewed above. This entails an ambiguity in the way one takes a double-soft limit

of two gluons or gravitons with momenta δ1q1 and δ2q2:

• One can take a consecutive soft limit in which one first takes δ2 to zero and there-

after δ1.

CSL(1, 2)An(3, . . . , n+ 2) = lim
δ1→0

lim
δ2→0

An+2(δ1q1, δ2q2, 3, . . . , n+ 2) . (1.4)

The ambiguity of this limit is then reflected in a non vanishing anti-symmetrised

version of this consecutive limit

aCSL(1, 2)An(3, . . . , n+ 2) =
1

2

[
lim
δ1→0

, lim
δ2→0

]
An+2(δ1q1, δ2q2, 3, . . . , n+ 2) . (1.5)

In fact we shall see that for gluons or gravitons of the same helicity the anti-

symmetrised consecutive limit always vanishes at leading order. For the case of

different helicities of the two soft particles, the anti-symmetrised consecutive limit is

non-zero. Such an anti-symmetrised consecutive limit for the case of identical helicity

photons and gravitons was recently studied in [29].

• Alternatively one can take a simultaneous soft limit in which one sets δ1 = δ2 = δ

and sends both momenta simultaneously to zero

DSL(1, 2)An(3, . . . , n+ 2) = lim
δ→0

An+2(δq1, δq2, 3, . . . , n+ 2) . (1.6)

It is this limit which naturally arises in the scalar scenarios where a single soft limit

vanishes due to Adler’s zero, and thus also the consecutive double-soft limit.

Both double-soft functions have a leading quadratic divergence in the soft limit. In order

to obtain a uniform description we set δ1 = δ2 = δ also for the consecutive limit after

– 3 –
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having taken the limits. It is then natural to define the subleading double-soft functions

via the series

CSL(1, 2) =
∑

i

δi−2CSL(i)(1, 2) and DSL(1, 2) =
∑

i

δi−2DSL(i)(1, 2) . (1.7)

Universality extends down at least to the subleading order.

It is interesting to compare the two soft-functions. As we shall show at leading order

in the case of identical helicities of particles 1 and 2 they agree

CSL(0)(1h, 2h) = DSL(0)(1h, 2h) . (1.8)

both for gravity and Yang-Mills. At the subleading order still for the same helicities the

two continue to agree in the gravity case but differ in the colour-ordered Yang-Mills case

CSL
(1)
gravity(1

h, 2h) = DSL
(1)
gravity(1

h, 2h) but CSL
(1)
YM(1h, 2h) ̸= DSL

(1)
YM(1h, 2h) . (1.9)

If the two soft particles carry opposite helicities the situation is different. While the leading

contributions continue to agree for gravity they now disagree at the leading level also for

Yang-Mills

CSL
(0)
gravity(1

h, 2h̄) = DSL
(0)
gravity(1

h, 2h̄) but CSL
(0)
YM(1h, 2h̄) ̸= DSL

(0)
YM(1h, 2h̄) . (1.10)

At the subleading order both gravity and Yang-Mills disagree

CSL
(1)
gravity(1

h, 2h̄) ̸= DSL
(1)
gravity(1

h, 2h̄) and CSL
(1)
YM(1h, 2h̄) ̸= DSL

(1)
YM(1h, 2h̄) . (1.11)

These results should be of use for establishing the algebraic structure of potential hidden

symmetries in the quantum gravity and Yang-Mills S-matrix. This, however, is left for

future work.

As a final application of our work, we use supersymmetric recursion relations [31, 36]

in N = 4 super Yang-Mills to address double-soft limits. This set-up can be used to

re-derive the double-soft limits of gluons obtained from the non-supersymmetric recursion

relations, but also to study double-soft scalar emission. The interesting observation here

is that while a single-soft scalar limit in N = 4 super Yang-Mills is finite, and hence

non-universal, double-soft scalar emissions gives rise to a divergence, and we compute the

corresponding double-soft scalar function.

The paper is organised as follows. In the next section we first review single-soft limits

of gluons and gravitons, and we then apply these results to study consecutive double-soft

limits of the same particles. Section 3 and 4 contain the main results of this paper, namely

the analysis of simultaneous double-soft limits of gluons and gravitons. Finally, we discuss

double-soft scalar emission in section 4. Two appendices with technical details of some of

our calculations complete the paper.

Note added: after finishing this work, we were made aware in recent email correspon-

dence with Anastasia Volovich and Congkao Wen of a work of Volovich, Wen and Zlot-

nikov [37] which has some overlap with our paper.
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2 Single and consecutive double-soft limits

We start from an amplitude of n+1 particles with momenta p1 to pn+1 and take the

momentum of the first particle to be soft by setting p1 = δ1q1 and expanding the amplitude

in powers of δ1. In terms of spinor variables, we define the soft limit by λp1 =
√
δ1λq1 and

λ̃p1 =
√
δ1λ̃q1 .

In order to keep the notation compact, we will use λq1 ≡ λ1 ≡ |1⟩ and λ̃q1 ≡ λ̃1 ≡ |1] for
the soft particle and λpa ≡ λa ≡ |a⟩ and λ̃pa ≡ λ̃a ≡ |a] for the hard ones a = 2, . . . , n+ 1.

2.1 Single-soft limits

Yang-Mills. The single-soft limit, including the subleading term, for color-ordered Yang-

Mills amplitudes is given by [1, 3, 4]

An+1(1
h1 , 2, . . . , n+ 1)

=

[
1

δ1
S(0)(n+ 1, 1h1 , 2) + S(1)(n+ 1, 1h1 , 2) + . . .

]
An(2, . . . , n+ 1) , (2.1)

with

S(0)(n+ 1, 1+, 2) =
⟨n+12⟩

⟨n+11⟩⟨12⟩ ,

S(1)(n+ 1, 1+, 2) =
1

⟨12⟩ λ̃
α̇
1

∂

∂λ̃
α̇
2

+
1

⟨n+11⟩ λ̃
α̇
1

∂

∂λ̃
α̇
n+1

(2.2)

for a positive-helicity gluon. For a negative-helicity gluon the soft factors are given by

conjugation of the spinor variables, λi ↔ λ̃i.

Gravity. For the gravitational case we have [2, 5]

Mn+1(1
h1 , 2, . . . , n+ 1)

=

[
1

δ1
S(0)(1h1) + S(1)(1h1) + δ1S

(2)(1h1) + . . .

]
Mn(2, . . . , n+ 1) , (2.3)

where for a positive-helicity graviton

S(0)(1+) =
n+1∑

a=2

[1a]

⟨1a⟩
⟨xa⟩
⟨x1⟩

⟨ya⟩
⟨y1⟩ , S(1)(1+) =

1

2

n+1∑

a=2

[1a]

⟨1a⟩

(
⟨xa⟩
⟨x1⟩ +

⟨ya⟩
⟨y1⟩

)
λ̃
α̇
1

∂

∂λ̃
α̇
a

. (2.4)

The spinors λx and λy are arbitrary reference spinors. The sub-subleading term is given by

S(2)(1+) =
1

2

n+1∑

a=2

[1a]

⟨1a⟩ λ̃
α̇
1 λ̃

β̇
1

∂2

∂λ̃
α̇
a∂λ̃

β̇
a

. (2.5)

As for the gluonic case, the opposite helicity factors are found by conjugation.
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2.2 Consecutive double-soft limits

In all double-soft limits, we start from an amplitude of n+2 particles and set the momenta

of the first and the second particle to p1 = δ1q1 and p2 = δ2q2 respectively. In terms

of spinor variables, we distribute the δ’s symmetrically as above: {
√
δ1λq1 ,

√
δ1λ̃q1} and

{
√
δ2λq2 ,

√
δ2λ̃q2}.

By expanding the amplitude in δ1 and δ2, we obtain various double-soft limits. In

the consecutive soft limit — in contradistinction to the simultaneous double-soft limit to

be discussed in the next section — we first expand in δ2 while keeping δ1 fixed, and then

expand each term of the series in δ1. The result can be calculated straightforwardly from

repeated use of the above single-soft limits.

Yang-Mills. As above, we first consider the case of gluons. Let us define the “consecutive

soft limit factor” CSL(n+ 2, 1h1 , 2h2 , 3) by

CSL(n+ 2, 1h1 , 2h2 , 3)An(3, . . . , n+ 2)

≡ lim
δ1→0

lim
δ2→0

An+2(δ1q
h1
1 , δ2q

h2
2 , 3, . . . , n+ 2)

=

[
1

δ2
S(0)(1, 2h2 , 3) + S(1)(1, 2h2 , 3)

]
× (2.6)

×
[
1

δ1
S(0)(n+ 2, 1h1 , 3) + S(1)(n+ 2, 1h1 , 3)

]
An(3, . . . , n+ 2) .

We can also define symmetrised and antisymmetrised versions of the consecutive limits

sCSL(n+ 2, 1h1 , 2h2 , 3)An(3, . . . , n+ 2) ≡ 1

2

{
lim
δ1→0

, lim
δ2→0

}
An+2(δ1q

h1
1 , δ2q

h2
2 , 3 . . . , n+ 2) ,

aCSL(n+ 2, 1h1 , 2h2 , 3)An(3, . . . , n+ 2) ≡ 1

2

[
lim
δ1→0

, lim
δ2→0

]
An+2(δ1q

h1
1 , δ2q

h2
2 , 3 . . . , n+ 2) .

(2.7)

As it will be of interest later, let us consider specific helicities:

CSL(n+ 2, 1+, 2+, 3) =
1

δ1δ2

⟨n+23⟩
⟨n+21⟩⟨12⟩⟨23⟩ +O(δ02/δ1, δ

0
1/δ2) ,

CSL(n+ 2, 1+, 2−, 3) =
1

δ1δ2

⟨n+23⟩
⟨n+21⟩[12][23]

[13]

⟨13⟩ +O(δ02/δ1, δ
0
1/δ2) . (2.8)

If we take the reverse consecutive limit, i.e. expand first in δ1 and then in δ2, the leading

term in CSL(1+, 2+) is unchanged; hence the symmetric combination is the same as either

ordering while the antisymmetric combination vanishes.

It is in fact useful to consider subleading terms; for simplicity, after expanding, we will

set δ1 = δ2 = δ and define

CSL(n+ 2, 1h1 , 2h2 , 3) =
∑

i

δi−2CSL(i)(n+ 2, 1h1 , 2h2 , 3) , (2.9)

– 6 –
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and similarly for s/aCSL. The first subleading term is given by

CSL(1)(n+ 2, 1+, 2+, 3)

= S(0)(1, 2+, 3)S(1)(n+ 2, 1+, 3) + S(1)(1, 2+, 3)S(0)(n+ 2, 1+, 3) . (2.10)

As S(1) involves derivatives there will in principle be “contact” terms when they act on

the other soft factor, however as the derivatives are only with respect to the λ̃’s and S(0)

depends only on the λ’s they are trivially zero.2

A short calculation yields the symmetric and antisymmetric combination of the con-

secutive soft factor at the next order

s/aCSL(1)(n+ 2, 1+, 2+, 3) = +
1

2

(
⟨n+23⟩⟨12⟩± ⟨n+22⟩⟨13⟩

⟨23⟩⟨n+21⟩⟨12⟩⟨13⟩

)
λ̃
α̇
2

∂

∂λ̃
α̇
3

+
1

2

(
⟨n+22⟩⟨13⟩± ⟨n+23⟩⟨12⟩
⟨23⟩⟨n+21⟩⟨12⟩⟨n+22⟩

)
λ̃
α̇
1

∂

∂λ̃
α̇
n+2

+
1

2

λ̃
α̇
1

⟨12⟩⟨23⟩
∂

∂λ̃
α̇
3

± 1

2

λ̃
α̇
2

⟨n+21⟩⟨12⟩
∂

∂λ̃
α̇
n+2

, (2.11)

where the upper sign corresponds to the symmetric case and the lower sign to the anti-

symmetric case. In the antisymmetric case, the expression can be simplified further,

aCSL(1)(n+ 2, 1+, 2+, 3)

=
1

2⟨12⟩

[(
λ̃
α̇
1

⟨23⟩ −
λ̃
α̇
2

⟨13⟩

)
∂

∂λ̃
α̇
3

−
(

λ̃
α̇
1

⟨2n+ 2⟩ −
λ̃
α̇
2

⟨1n+ 2⟩

) ∂

∂λ̃
α̇
n+2

]
. (2.12)

Turning to the case of mixed helicity, the leading term for the reversed limit is already

different and so we find

s/aCSL(0)(n+ 2, 1+, 2−, 3) =
1

2

1

⟨n+21⟩[23]

(
⟨n+23⟩
[12]

[13]

⟨13⟩ ±
[n+23]

⟨12⟩
⟨2n+2⟩
[2n+2]

)
, (2.13)

where again the upper sign corresponds to the symmetric case, which will be the object

most directly comparable to the simultaneous double-soft limit, and the lower sign to the

antisymmetric case. At subleading order we find for the symmetric/antisymmetric case

s/aCSL(1)(n+ 2, 1+, 2−, 3) = ±1

2

1

[n+22]2
[n+21]

⟨n+21⟩ +
1

2

1

⟨13⟩2
⟨23⟩
[23]

+
1

2

⟨n+23⟩⟨12⟩± ⟨n+22⟩⟨13⟩
[23]⟨n+21⟩⟨12⟩⟨13⟩ λα

2
∂

∂λα
3

+
1

2

[n+22][13]± [n+23][12]

[23]⟨n+21⟩[12][23] λ̃
α̇
1

∂

∂λ̃
α̇
n+2

(2.14)

+
1

2

[13]

[12][23]

λ̃
α̇
1

⟨13⟩
∂

∂λ̃
α̇
3

± 1

2

⟨n+22⟩
⟨n+21⟩⟨12⟩

λα
2

[n+22]

∂

∂λα
n+2

.

2It is perhaps worthwhile to note that this is only valid for generic external momenta as we neglect

holomorphic anomaly terms that can arise when external legs are collinear with soft legs.
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As before we find some simplifications for the antisymmetric combination of consecu-

tive limits,

aCSL(1)(n+ 2, 1+, 2−, 3) =
1

2

1

⟨13⟩2
⟨23⟩
[23]

− 1

2

1

[n+22]2
[n+21]

⟨n+21⟩

+
1

2

λ̃
α̇
1

[12]

(
1

[n+22]

[n+21]

⟨n+21⟩
∂

∂λ̃
α̇
n+2

+
1

[23]

[13]

⟨13⟩
∂

∂λ̃
α̇
3

)

−1

2

λα
2

⟨12⟩

(
1

⟨n+21⟩
⟨n+22⟩
[n+22]

∂

∂λα
n+2

+
1

⟨13⟩
⟨23⟩
[23]

∂

∂λα
3

)
. (2.15)

Gravity. We can repeat the above considerations for the gravitational case and similarly

define the consecutive soft limit factor CSL(1h1 , 2h2) as first taking particle 2 to be soft and

then 1. If both gravitons have positive helicity we find at leading order

CSL(0)(1+, 2+) = S(0)(2+)S(0)(1+) =
1

⟨12⟩4
n+2∑

a,b ̸=1,2

[2a][1b]

⟨2a⟩⟨1b⟩⟨1a⟩
2⟨2b⟩2 , (2.16)

where we have used the freedom to choose the reference spinors in the two soft factors

separately. Specifically, we chose the two reference spinors in S(0)(2+) to be λ1 and those

in S(0)(1+) to be λ2. This makes the symmetry in particles 1 and 2 manifest, such that

aCSL(0)(1+, 2+) = 0 . (2.17)

We see that the consecutive soft limit naturally involves a double sum over the external legs.

At the next order we have

CSL(1)(1+, 2+) = S(0)(2+)S(1)(1+) + S(1)(2+)S(0)(1+) . (2.18)

Once again there will in principle be contact terms, which involve only a single sum over

external legs, specifically

S(1)(2+)S(0)(1+) =
1

2

∑

a ̸=1,2

[2a][12]

⟨2a⟩⟨12⟩
⟨x′a⟩⟨y′a⟩
⟨x′1⟩⟨y′1⟩ + non-contact terms , (2.19)

where x′ and y′ denote the reference spinors for the first particle. Choosing as above

λx′ = λy′ = λ2, we see that this contact term vanishes by momentum conservation. The

complete subleading consecutive soft term is thus

CSL(1)(1+, 2+) =
1

⟨12⟩3
∑

a,b ̸=1,2

[2a][1b]

⟨2a⟩⟨1b⟩⟨1a⟩⟨2b⟩
[
⟨2b⟩λ̃α̇

2
∂

∂λ̃
α̇
a

− ⟨1a⟩λ̃α̇
1

∂

∂λ̃
α̇
b

]
. (2.20)

Due to the absence of the contact term the expression is naturally symmetric in q1 and q2
and so aCSL(1)(1+, 2+) also vanishes.

For the case where the first particle has positive helicity but the second has negative

we find, for the same choice of reference spinors and to leading order,

CSL(0)(1+, 2−) =
1

⟨12⟩2[12]2
n+2∑

a,b ̸=1,2

⟨2a⟩[1b]
[2a]⟨1b⟩ [1a]

2⟨2b⟩2 . (2.21)
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A benefit of this choice of reference spinors is that it makes manifest that the order of soft

limits does not matter, i.e.

aCSL(0)(1+, 2−) = 0 . (2.22)

At subleading order we have, after taking the symmetric combination of soft limits,

sCSL(1)(1+, 2−) =
1

2⟨12⟩[12]
∑

a ̸=1,2

[1a]2⟨2a⟩2

⟨1a⟩2[2a]2 ⟨a|q12|a] (2.23)

+
1

⟨12⟩2[12]
∑

a,b ̸=1,2

⟨2a⟩[1b]
[2a]⟨1b⟩

[
⟨2b⟩2[1a]λα

2
∂

∂λα
a
− ⟨1a⟩2[2b]λα

1
∂

∂λα
b

]
.

We can of course continue to the sub-subleading terms, CSL(2), however as the explicit

expressions are involved we relegate them to appendix A. However it is worth nothing

that the sub-subleading terms involve a double contact term which has the same scaling

as CSL(1). If we consider the symmetrized version it has the form

sCSL(2)
∣∣∣
dc

=
1

2[12]⟨12⟩
∑

a ̸=1,2

(
[1a]⟨2a⟩4

⟨1a⟩3 +
⟨2a⟩[1a]4

[2a]3

)
, (2.24)

which should be combined with with sCSL(1)
∣∣
c
to give

1

2⟨12⟩[12]
∑

a ̸=1,2

[1a]3⟨2a⟩3

⟨1a⟩[2a]

[
1

⟨a1⟩[1a]

(
1− ⟨a2⟩[2a]

⟨a1⟩[1a]

)
+

1

⟨a2⟩[2a]

(
1− ⟨a1⟩[1a]

⟨a2⟩[2a]

)]
. (2.25)

Notably for CSL(1) the contact term does not vanish and so we have a non-trivial antisym-

metric combination

aCSL(1)(1+, 2−) =
1

2⟨12⟩[12]
∑

a ̸=1,2

[1a]2⟨2a⟩2

⟨1a⟩2[2a]2 ⟨a|q12̄|a] , (2.26)

where q12̄ = q1 − q2. This term is more local than might be naively expected, rather in

having the form of a single sum over hard legs it is more like a single-soft factor.

3 Simultaneous double-soft gluon limits

3.1 Summary of results

In this section we turn to the simultaneous double-soft limits, where we set δ1 = δ2 =: δ

and expand the amplitude in powers of δ. Correspondingly, we define the “double-soft

limit factor” by

DSL(n+2, 1h1 , 2h2 , 3)An(3, . . . , n+2) = lim
δ→0

An+2(δq
h1
1 , δqh2

2 , 3, . . . , n+2) , (3.1)

where the corresponding expansion of the double-soft function in δ is,

DSL(n+ 2, 1h1 , 2h2 , 3) =
∑

i

δi−2DSL(i)(n+ 2, 1h1 , 2h2 , 3) . (3.2)
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The leading double-soft factor for the 1+2+ helicity configuration may be straightforwardly

derived from the formula of the generic MHV gluon amplitude. For the 1+2− helicity case,

it is sufficient to consider the split-helicity six-point amplitude A6(5+, 6+, 1+, 2−, 3−, 4−).3

The results are

DSL(0)(n+2, 1+, 2+, 3)

=
⟨n+23⟩

⟨n+21⟩⟨12⟩⟨23⟩ = S(0)(n+ 2, 1+, 2) S(0)(n+ 2, 2+, 3) , (3.3)

DSL(0)(n+2, 1+, 2−, 3)

=
1

⟨n+2|q12|3]

[
1

2kn+2 · q12
[n+23]⟨n+22⟩3

⟨12⟩⟨n+21⟩ − 1

2k3 · q12
⟨n+23⟩[31]3

[12][23]

]
, (3.4)

where

q12 := q1 + q2 . (3.5)

These formulae were tested numerically using S@M [38] and GGT [39, 40] for a wide range

of MHV, NMHV and NNMHV amplitudes from lengths 6 through 14. Importantly these

formulae do not have a “local” expression, i.e. they may not be written as a sum over a

density depending on the two soft and one hard leg. Both hard legs are entangled. In

the next section we will present a derivation of (3.3) and (3.4) based on BCFW recursion

relations [41, 42].

The sub-leading corrections to (3.3) and (3.4) are also computed via BCFW recursions

in the following section and we present the results below:

DSL(1)(n+ 2, 1+, 2+, 3)

= S(0)(n+ 2, 1+, 2)S(1)(n+ 2, 2+, 3) + S(0)(1, 2+, 3)S(1)(n+ 2, 1+, 3), (3.6)

DSL(1)(n+ 2, 1+, 2−, 3)

= S(0)(n+ 2, 1+, 2)S(1)(n+ 2, 2−, 3) + S(0)(3, 2−, 1)S(1)(n+ 2, 1+, 3)

+
⟨23⟩[13]
[32]⟨12⟩

1

2p3 · q12
λα
2

∂

∂λα
3

+
⟨n+ 22⟩[2n+ 2]

[n+ 21]⟨12⟩
1

2pn+2 · q12
λα
2

∂

∂λα
n+2

+
[n+ 21]⟨2n+ 2⟩
⟨1n+ 2⟩[21]

1

2pn+2 · q12
λ̃α̇
1

∂

∂λ̃
α̇
n+2

+
[31]⟨32⟩
⟨13⟩[21]

1

2p3 · q12
λ̃α̇
1

∂

∂λ̃
α̇
3

+ DSL(1)(n+ 2, 1+, 2−, 3)|c, (3.7)

where,

DSL(1)(n+ 2, 1+, 2−, 3)|c =
⟨n+ 22⟩2[1n+ 2]

⟨n+ 21⟩
1

(2pn+2 · q12)2
+

[31]2⟨23⟩
[32]

1

(2p3 · q12)2
. (3.8)

It is interesting to note that the results for both the leading and the sub-leading

simultaneous double-soft function for the 1+2+ gluons are same as the consecutive soft

3The explicit expression for the latter amplitude can be found e.g. in Exercise 2.2 of [13].
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Figure 1. The first BCFW diagram contributing to the double-soft factor. The amplitude on the
left-hand side is MHV.

limits in the previous section. However, the case with the 1+2− is considerably different

than the consecutive soft limits scenario and we get new terms especially the last two lines

in (3.7) look like some deformation of S(1)(n+ 2, 2−, 3) and S(1)(n+ 2, 1+, 3) respectively,

due to the double-soft limit. Moreover, we also have the contact terms (3.8) which are

absent for the previous case.

3.2 Derivation from BCFW recursion relations

In the application of the BCFW recursion relation we consider a ⟨12] shift, i.e. a holo-

morphic shift of momentum of the first soft particle and an anti-holomorphic shift of the

momentum of the second one, specifically we define

λ̂1 := λ1 + zλ2 ,
ˆ̃λ2 := λ̃2 − zλ̃1 . (3.9)

The first observation to make is that generic BCFW diagrams with the soft legs belonging

to the left or right An>3 amplitudes are subleading in the soft limit.4 This is because

the shifted momentum of a soft leg turns hard through the shift in a generic BCFW

decomposition. The exception is when any of the two soft legs belongs to a three-point

amplitude. Thus nicely, there are two special diagrams to consider, namely those where

either one of the two soft particles belongs to a three-point amplitude. In the following we

consider separately two cases: 1+2+ and 1+2−.

The 1+2+ case. There are two special BCFW diagrams to consider. The first one is

shown in figure 1, where the three-point amplitude sits on the left with the external legs 1̂

and n+2 (with the remaining legs 2, . . . , n+1 on the right-hand side). A second diagram

has the three-point amplitude on the right-hand side, with external legs 2̂ and 3. In the

first diagram, the three-point amplitude has the MHV helicity configuration because of our

choice of ⟨12] shifts. One easily finds that the solution to ⟨1̂2⟩ = 0 is

z∗ = −⟨1n+2⟩
⟨2n+2⟩ , (3.10)

4This observation was made in [31] in relation to the study of a double-soft scalar limit. There, the

relevant diagrams turned out to be those involving a four-point functions, and are indeed finite.
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and note that z∗ stays constant as particles 1 and 2 become soft. One also finds

λ̂1 = − ⟨12⟩
⟨2n+2⟩ λn+2 , (3.11)

as well as

λP̂ λ̃P̂ = λn+2

(
λ̃n+2 +

⟨12⟩
⟨n+ 22⟩ λ̃1

)
(3.12)

If we were taking just particle 2 soft, the shifted momentum 2̂ would remain hard. However

we are taking a simultaneous double-soft limit where both particles 1 and 2 are becoming

soft, and as a consequence the momentum 2̂ becomes soft as well, see (3.9) and (3.10).

Thus, we can take a soft limit also on the amplitude on the right-hand side. The diagram

in consideration then becomes

A3
(
(n+2)+, 1̂+, P̂−) 1

(q1 + pn+2)2
An(2̂

+, . . . , P̂ ) , (3.13)

Using the explicit expression for the three-point anti-MHV amplitude and the shifts derived

earlier, and also (3.12), we may rewrite the right-hand subamplitude in the above with the

soft shifted leg 2̂ as

An

(
2̂+, . . . , pn+2 + δ

⟨12⟩
⟨n+ 22⟩ |n+ 2⟩ [1|

)

= e
δ ⟨12⟩
⟨n+2 2⟩ [1∂n+2]

(
1

δ
S(0)(n+ 2, 2̂+, 3) + S(1)(n+ 2, 2̂+, 3)

+δ S(2)(n+ 2, 2̂+, 3)

)
An(3, . . .) , (3.14)

where, we define,

[i∂j ] := λ̃α̇
i

∂

∂λ̃
α̇
j

(3.15)

From this expressions all relevant leading and subleading contributions to the simultaneous

double-soft factor

DSL(n+ 2, 1+, 2+, 3) =
A3
(
(n+2)+, 1̂+, P̂−)

(q1 + pn+2)2

× e
δ ⟨12⟩
⟨n+2 2⟩ [1∂n+2]

(
1

δ
S(0)(n+ 2, 2̂+, 3) + S(1)(n+ 2, 2̂+, 3)

+ δ S(2)(n+ 2, 2̂+, 3)

)
(3.16)

may be extracted. Expanding the above expression in δ, at leading order we get,

DSL(0)(n+ 2, 1+, 2+, 3) =
⟨n+23⟩

⟨n+21⟩⟨12⟩⟨23⟩ . (3.17)

For the sake of definiteness we have considered particle n+2 to have positive helicity; a

similar analysis can be performed for the case where n+2 has negative helicity, and leads to
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Figure 2. The second BCFW diagram contributing to the double-soft factor. The three-point
amplitude is MHV. For the case where gluon 2 has positive helicity we find that this diagram is
subleading compared to that in figure 1 and can be discarded; while when 2 has negative helicity
this diagram is as leading as figure 1.

the very same conclusions. Note that this contribution (3.13) diverges as 1/δ2 if we scale

the soft momenta as qi → δqi, with i = 1, 2. There still is another diagram to compute,

shown in figure 2 but we now show that it is in fact subleading. In this diagram, the

amplitude on the right-hand side is a three-point amplitude with particles 2̂+, 3 and P̂ . If

particle 3 has positive helicity, then the three-point amplitude is MHV and hence vanishes

because of our shifts. Thus we have to consider only the case when particle 3 has negative

helicity. In this case we have the diagram is

A3(2̂
+, 3−, P̂−)

1

(q2 + p3)2
An+1(1̂

+, P̂+, 4, . . . , (n+2)+) . (3.18)

Similarly to the case discussed earlier, the crucial point is that leg 1̂+ is becoming soft as

the momenta 1 and 2 go soft. The diagram then becomes

A3(2̂
+, 3−, P̂−)

1

(q2 + p3)2
S(0)(n+2, 1̂+, P̂ )An(P̂

+, 4, . . . , (n+2)+) , (3.19)

and note that An
(
P̂+, 4, . . . , (n+2)+

)
→ An

(
3+, 4, . . . , (n+2)+

)
in the soft limit. We can

now evaluate the prefactor in (3.19) using that, for this diagram, z∗ = [23]/[13] and

λ̃2 = λ̃3
[12]

[13]
, λP̂ λ̃P̂ =

(
λ3 +

[12]

[13]
λ2

)
λ̃3 . (3.20)

In the soft limit we find

A3(2̂
+, 3−, P̂−)

1

(q2 + p3)2
S(0)(n+2, 1̂+, P̂ ) → [12]3

[23][31]

1

p3 · q12
⟨n+23⟩

⟨n+2| q12 |3]
, (3.21)

which is finite under the scaling qi → δqi, with i = 1, 2, and hence subleading with respect

to (3.13). In conclusion, we find for the double-soft factor for soft gluons 1+2+:

An+2(1
+, 2+, 3, . . . , n) → DSL(n+2, 1+, 2+, 3)An(3, . . . , n+ 2) , (3.22)
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with

DSL(0)(n+2, 1+, 2+, 3) =
⟨n+23⟩

⟨n+21⟩⟨12⟩⟨23⟩ , (3.23)

which agrees with (3.3).

A comment is in order here. We observe that the BCFW diagram in figure 1 is precisely

the diagram contributing to the single-soft gluon limit identified originally in [5] and later

studied in [4] for Yang-Mills. In the simultaneous double-soft limit, particle 2̂ also becomes

soft thanks to the shifts, and hence we can approximate the BCFW diagram by further

extracting a single-soft function for a gluon with soft, shifted momentum 2̂:

An+2(1
+, 2+, 3, . . . , n+ 2) → S(0)(n+ 2, 1+, 2)S(0)(n+ 2, 2̂+, 3)An(3, . . . , n+2) . (3.24)

Moreover, because of our ⟨12] shifts and the holomorphicity of the soft factor for a single

positive-helicity gluon, we have that S(0)(n+ 2, 2̂+, 3) = S(0)(n+ 2, 2+, 3), thus

DSL(0)(n+2, 1+, 2+, 3) = S(0)(n+ 2, 1+, 2)S(0)(n+ 2, 2+, 3) . (3.25)

In fact, we can immediately see that a consecutive limit, where particles 1 and 2 are taken

soft one after the other (as opposed to our simultaneous double-soft limit) would give the

same result. Indeed one would get

An+2(1
+, 2+, 3, . . . , n+ 2) → S(0)(n+ 2, 1+, 2)An+1(2, . . . , n+2)

→ S(0)(n+ 2, 1+, 2) S(0)(n+ 2, 2+, 3)An(3, . . . , n+2) , (3.26)

in other words at the leading order, the simultaneous double-soft factor for same-helicity

soft gluons is nothing but the consecutive soft limit given by the product of two single soft

gluon factors.

Now, we present the subleading term in the expansion of (3.16), which scales as δ−1,

DSL(1)(n+ 2, 1+, 2+, 3) = − ⟨n+ 22⟩
⟨n+ 21⟩⟨12⟩

(
1

⟨23⟩ λ̃
α̇
2

∂

∂λ̃
α̇
3

+
1

⟨n+ 22⟩ λ̃
α̇
2

∂

∂λ̃
α̇
n+2

)

− ⟨13⟩
⟨12⟩⟨23⟩

(
1

⟨13⟩ λ̃
α̇
1

∂

∂λ̃
α̇
3

+
1

⟨n+ 21⟩ λ̃
α̇
1

∂

∂λ̃
α̇
n+2

)
(3.27)

and the previous equation can be further simplified in terms of leading and subleading

terms of single-soft functions as,

DSL(1)(n+ 2, 1+, 2+, 3)

= S(0)(n+ 2, 1+, 2)S(1)(n+ 2, 2+, 3) + S(0)(1, 2+, 3)S(1)(n+ 2, 1+, 3). (3.28)

Note that this contribution was only from the first type of BCFW diagram discussed above,

the second type was finite already at the leading order so it again does not contribute to

the subleading term here.
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The 1+2− case. We turn again to the two diagrams considered in the previous case.

However, we will see that this time they are both leading. Consider the first diagram. The

only difference compared to (3.13) is the soft factor, which now has to be replaced with

S(0)(P̂, 2̂−, 3) since particle 2 has now negative helicity. We use the same shifts, and make

use of the results
ˆ̃λ2 =

q12 |n+2⟩
⟨2n+2⟩ , λ̃P̂ =

(q1 + pn+2)|2⟩
⟨2n+2⟩ . (3.29)

Using this, we evaluate the soft factor as

[P̂3]

[P̂ 2̂][2̂3]
→ [3|n+2 |2⟩

[3| q12 |n+2 ⟩
⟨n+22⟩

2pn+2 · q12
. (3.30)

The diagram in consideration is then quickly seen to give

[3n+2] ⟨n+22⟩3

⟨12⟩⟨n+21⟩
1

[3| q12 |n+2 ⟩
1

2pn+2 · q12
An(3, . . . , n+2) . (3.31)

Next we move to the second diagram. Again, in principle one has to distinguish two cases

depending on the helicity of particle 3, but it is easy seen that such cases turn out to give

the same result. For the sake of definiteness we illustrate the situation where particle 3 has

positive helicity. We obtain

⟨P̂2⟩3

⟨23⟩⟨3P̂ ⟩
1

⟨23⟩[32] S
(0)(n+2, 1̂+, P̂ )An(P̂, 4, . . . , n+2) . (3.32)

Using

λ̃P̂ =
[1|(q2 + p3)

[13]
, λ̂1 =

q12 |3]
[13]

, (3.33)

we easily see that this contribution gives, to leading order in the soft momenta,

⟨n+23⟩[13]3

[12][23]

1

⟨n+2| q12 |3]
1

2p3 · q12
An(3, 4, . . . , n+2) . (3.34)

Putting together (3.31) and (3.34) one obtains for the double-soft factor for soft gluons

1+2−:

An+2(1
+, 2−, 3, . . . , n) → DSL(n+2, 1+, 2−, 3)An(3, . . . , n+ 2) , (3.35)

with

DSL(0)(n+2, 1+, 2−, 3) =
1

⟨n+2| q12 |3]

[
1

2pn+2 · q12
[n+23] ⟨n+22⟩3

⟨12⟩⟨n+21⟩

− 1

2p3 · q12
⟨n+23⟩[31]3

[12][23]

]
, (3.36)

which agrees with (3.4).

As already observed earlier, we comment that the diagrams in figure 1 and 2 are

precisely the BCFW diagrams which would contribute to the single-soft gluon limit when
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either gluon 1 or 2 are taken soft, respectively. Thus, the result we find for the double-soft

limit has the structure

DSL(0)(n+2, 1+, 2−, 3) = S(0)(1+)S(0)(2̂−) + S(0)(2−)S(0)(1̂+) , (3.37)

with the two contributions arising from figure 1 and 2, respectively. The situation however

is less trivial than in the case where the two soft gluons had the same helicity, and the

double-soft factor is not the product of two single-soft factors.

Now, following the steps for the case of {1+, 2+} gluons, we can derive the subleading

corrections to the double-soft function. However, unlike the previous case here we will have

to take into account the contribution from both the BCFW diagrams 1 and 2 .

DSL(1)(n+ 2, 1+, 2−, 3)

=
[3n+ 2]⟨n+ 22⟩3

⟨n+ 21⟩⟨12⟩⟨n+ 2|q12|3](2pn+2 · q12)

(
−(2pn+2 · q12)

[3n+ 2]⟨n+ 22⟩λ
α
2

∂

∂λα
3

+
⟨n+ 2|q12|3]

[3n+ 2]⟨n+ 22⟩λ
α
2

∂

∂λα
n+2

− ⟨12⟩
⟨n+ 22⟩ λ̃

α̇
1

∂

∂λ̃
α̇
n

)

+
⟨n+ 23⟩[13]3

[32][21]⟨n+ 2|q12|3](2p3 · q12)

(
−(2p3 · q12)
[13]⟨n+ 23⟩ λ̃

α̇
1

∂

∂λ̃
α̇
n+2

+
⟨n+ 2|q12|3]
[13]⟨n+ 23⟩ λ̃

α̇
1

∂

∂λ̃
α̇
3

− [21]

[13]
λα
2

∂

∂λα
3

)

+ DSL(1)(n+ 2, 1+, 2−, 3)|c, (3.38)

where contribution to the subleading terms coming from the contact terms, i.e. the ones

with no derivative operator, and these are given by

DSL(1)(n+ 2, 1+, 2−, 3)|c =
⟨n+ 22⟩2[1n+ 2]

⟨n+ 21⟩
1

(2pn+2 · q12)2
+

[31]2⟨23⟩
[32]

1

(2p3 · q12)2
.

(3.39)

We note that the above equation can be simplified further as,

DSL(1)(n+ 2, 1+, 2−, 3)

= S(0)(n+ 2, 1+, 2)S(1)(n+ 2, 2−, 3) + S(0)(3, 2−, 1)S(1)(n+ 2, 1+, 3)

+
⟨23⟩[13]
[32]⟨12⟩

1

(2p3 · q12)
λα
2

∂

∂λα
3

+
⟨n+ 22⟩[2n+ 2]

[n+ 21]⟨12⟩
1

(2pn+2 · q12)
λα
2

∂

∂λα
n+2

+
[n+ 21]⟨2n+ 2⟩
⟨1n+ 2⟩[21]

1

(2pn+2 · q12)
λ̃α̇
1

∂

∂λ̃
α̇
n+2

+
[31]⟨32⟩
⟨13⟩[21]

1

(2p3 · q12)
λ̃α̇
1

∂

∂λ̃
α̇
3

+ DSL(1)(n+ 2, 1+, 2−, 3)|c. (3.40)
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Figure 3. The first class of BCFW diagrams contributing to the double-soft factor for two gravitons.
The amplitude on the left-hand side is MHV, and one has to sum over all possible choices of the
graviton b.

4 Simultaneous double-soft graviton limits

4.1 Summary of results

The analysis of the double-soft limit of gravitons in terms of the BCFW recursion relations

for General Relativity [43, 44] is entirely similar to that of gluons described in the previous

section. As before, we scale the momenta of the soft particles as qi → δqi, i = 1, 2.

The main result here is that, at leading order in δ and for both choices of helicities of the

gravitons becoming soft, the double-soft factor is nothing but the product of two single-soft

particles (and we recall that the order in which the gravitons are taken soft is immaterial

to this order, see (2.17) and (2.22)). Specifically, we define the graviton double-soft limit

factor by

DSL(1h1 , 2h2)Mn(3, . . . , n+2) = lim
δ→0

Mn+2(δq
h1
1 , δqh2

2 , 3, . . . , n+2) (4.1)

and find

DSL(0)(1h1 , 2h2) = S(0)(1h1)S(0)(2h2) (4.2)

DSL(1)(1h1 , 2h2) = S(0)(1h1)S(1)(2h2) + S(0)(2h2)S(1)(1h1) + DSL(1)(1h1 , 2h2)|c , (4.3)

where S(i)(s±) are the single-soft factors for graviton s± given in (2.4). The contact term

at subleading order, DSL(1)(1h1 , 2h2)|c, vanishes for identical helicities h1 = h2 of the soft

gravitons and takes the form

DSL(1)(1+, 2−)|c =
1

q212

∑

a ̸=1,2

[1a]3⟨2a⟩3

⟨1a⟩[2a]
1

2 pa · q12
, (4.4)

in the mixed helicity case. Note that both double-soft factors diverge at leading order as

1/δ2. Differences to the consecutive soft-limit appear only in the contact term at subleading

order 1/δ in the mixed helicity case.
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4.2 Derivation from the BCFW recursion relation

As for the case of gluons, we distinguish two cases depending on whether the two gravitons

becoming soft have the same or opposite helicities. We outline below the main steps of the

derivations.

The 1+2+ case. The first relevant class of diagram is shown in figure 3, where b can be

any of the n hard particles. For the sake of definiteness we illustrate the case where b has

positive helicity; the case where b has negative helicity leads to an identical result. Using

the fact that the momentum q̂2 is becoming soft we can write this diagram as

M3(b
+, 1̂+, P̂−)

1

(q1 + pb)2
Mn(2̂

+, P̂, . . .) , (4.5)

where S(0)(s+) is given in (2.4), and x and y denote two arbitrary reference spinors. Using

the explicit expression for the three-point anti-MHV amplitude and the shifts derived

earlier, and that P̂ = pb + δ ⟨1b⟩
⟨2b⟩ |b⟩ [1| we may rewrite the last term in the above with the

soft shifted leg 2̂ as

Mn

(
2̂+, pb+δ

⟨1b⟩
⟨2b⟩ |b⟩ [1|, . . .

)
= e

δ ⟨1b⟩
⟨2b⟩ [1∂b]

(
1

δ
S(0)(2̂+)+S(1)(2̂+)+δ S(2)(2̂+)

)
Mn(b, . . .) .

(4.6)

From this expressions all relevant leading and subleading contributions to the simultaneous

soft factor may be extracted:

DSL(1+, 2+) =
M3(b+, 1̂+, P̂−)

(q1 + pb)2
e
δ ⟨1b⟩
⟨2b⟩ [1∂b]

(
1

δ
S(0)(2̂+) + S(1)(2̂+) + δ S(2)(2̂+)

)
. (4.7)

At leading order we find

DSL(0)(1+, 2+) Mn(b, . . .) , (4.8)

with

DSL(0)(1+, 2+) =
1

⟨12⟩2
∑

b ̸=1,2

[b1]⟨b2⟩2

⟨1b⟩ S(0)(2̂)

=
1

⟨12⟩2
∑

a,b ̸=1,2

[b1]⟨b2⟩
⟨1b⟩

⟨b| q12 |a]
⟨2a⟩

⟨xa⟩⟨ya⟩
⟨x2⟩⟨y2⟩ . (4.9)

The expression (4.9) is symmetric in the two soft particles, 1 and 2, although not manifestly.

Furthermore, it turns out using total momentum conservation that

DSL(0)(1+, 2+) = S(0)(1+)S(0)(2+) , (4.10)

i.e. the double-soft factor for gravitons with the same helicity is the product of two single-

soft factors. Again it is not a local expression, in the sense explained in section 3.
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Figure 4. The second class of BCFW diagram contributing to the double-soft graviton factor. The
three-point amplitude is MHV and one has to sum over all possible choices of graviton b. Similarly
to the gluon case, this diagram contributes only when graviton 2 has negative helicity.

One can also work out the first subleading contribution to the double-soft limit. The

result reads for the non-contact term

DSL(1)(1+, 2+)|nc

=
1

⟨12⟩2
∑

a,b ̸=1,2

[b1]⟨b2⟩
⟨1b⟩

⟨b|q12|a]
⟨2a⟩

[
1

2

(
⟨xa⟩
⟨x2⟩ +

⟨ya⟩
⟨y2⟩

)(
λ̃α̇
2

∂

∂λ̃α̇
a

+
⟨1b⟩
⟨2b⟩ λ̃

α̇
1

∂

∂λ̃α̇
a

)

+
⟨xa⟩⟨ya⟩⟨12⟩
⟨x2⟩⟨y2⟩⟨b2⟩ λ̃

α̇
1

∂

∂λ̃α̇
b

]
(4.11)

Making the gauge choice λx = λy = λ1 to make contact to the discussion in section 2.2

we find

DSL(1)(1+, 2+)|nc =
1

⟨12⟩3
∑

a,b ̸=1,2

[b1]⟨b2⟩
⟨1b⟩

⟨b|q12|a] ⟨1a⟩
⟨2a⟩

×
[
λ̃α̇
2

∂

∂λ̃α̇
a

+
⟨1b⟩
⟨2b⟩ λ̃

α̇
1

∂

∂λ̃α̇
a

− ⟨1a⟩
⟨2b⟩ λ̃

α̇
1

∂

∂λ̃α̇
b

]
. (4.12)

In fact the middle term vanishes by momentum conservation
∑

b |b]⟨b| = 0. The structure

may be further reduced by splitting up the ⟨b|q1+q2|a] factor and using momentum conser-

vation and the Lorentz invariance
∑

b[1b] [1∂̃b]A = 0. This lets us rewrite this double-soft

factor as

DSL(1)(1+, 2+)|nc = S(0)(1+)S(1)(2+) + S(0)(2+)S(1)(1+) . (4.13)

We also get a contact term contribution to the above subleading factor when the derivative

operator [1∂b] in the exponential in (4.7) hits the leading soft function S(0)(2̂+),

DSL(1)(1+, 2+)|c =
[12]

⟨12⟩3 ⟨1|
∑

b ̸=1,2

pb|1] = 0 . (4.14)

As for the case of soft gluons, we have to consider another diagram which is however

vanishing as we take the two particles soft. This diagram is depicted in figure 4. A short
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calculation shows that the contribution of this diagram is at the leading order in δ

(
⟨P̂3⟩3

⟨P̂2⟩⟨23⟩

)2
1

⟨2b⟩[b2] S
(0)(1̂+) =

[12]6

[13]2[23]2
S(0)(1̂+) , (4.15)

times an n-point amplitude. This quantity is immediately seen to vanish as we take the

momenta of particles 1 and 2 soft and thus irrelevant at the first three leading orders.

Similarly, one also convinces oneself that the generic BCFW diagram with n > 3 point

amplitudes to the right or left is finite in the soft limit and therefore not contributing to

the considered leading orders. As soon as diagrams of this type start contributing the

universality is lost and there is no double-soft factor.

The 1+2− case. The analysis of this case proceeds in a very similar way as for gluons.

Again there are two diagrams contributing, depicted in figures 3 and 4. The calculations

of these diagrams is straightforward and involves the soft factors S(2̂−) and S(1̂+), respec-

tively. These soft factors are given by,5

S(0)(2̂−) =
∑

a ̸=1,2

⟨2a⟩[xa][ya]
[2̂a][x2̂][y2̂]

, S(1)(2̂−) =
1

2

∑

a ̸=1,2

⟨2a⟩
[2̂a]

(
[xa]

[x2̂]
+

[ya]

[y2̂]

)
⟨2∂a⟩ (4.16)

S(0)(1̂+) =
∑

a ̸=1,2

[1a]⟨xa⟩⟨ya⟩
⟨1̂a⟩⟨x1̂⟩⟨y1̂⟩

, S(1)(1̂+) =
1

2

∑

a ̸=1,2

[1a]

⟨1̂a⟩

(
⟨xa⟩
⟨x1̂⟩

+
⟨ya⟩
⟨y1̂⟩

)
[1∂a] (4.17)

where
ˆ̃λ2 =

q12 |b⟩
⟨2b⟩ , (4.18)

for the first recursive diagram, and

λ̂1 =
q12 |b]
[1b]

, (4.19)

for the second one. It is particularly convenient to choose λ̃x = λ̃y = λ̃1 and λx = λy = λ2,

for the first and second diagram, respectively. Doing so, we obtain from the first diagram

1

δ

⟨2b⟩2 [b1]
⟨12⟩2 ⟨1b⟩ e

δ ⟨12⟩
⟨b2⟩ [1∂b]

{1
δ
S(0)(2̂−) + S(1)(2̂−)

}
Mn(3, . . . , n+ 2) , (4.20)

while, for the second,

1

δ

⟨2b⟩ [b1]2

[12]2 [b2]
e
δ [12]
[1b] ⟨2∂b⟩

{1
δ
S(0)(1̂+) + S(1)(1̂+)

}
Mn(3, . . . , n+ 2) . (4.21)

The double-soft factor for soft gravitons 1+2− is obtained by summing the two contributions

in (4.20) and (4.21). At leading order we find

DSL(0)(1+, 2−) =
1

q412

∑

a,b ̸=1,2

[
⟨2b⟩3[1a]2[1b]⟨2a⟩
⟨1b⟩ ⟨b| q12 |a]

+
[1b]3⟨2a⟩2⟨2b⟩[1a]

[2b] [b| q12 |a⟩

]
. (4.22)

5Recall that we are using a ⟨12] shift, which explains the various hatted quantities in (4.16) and (4.17).
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In fact, we can easily combine the two terms in (4.22) and show that we just get the result

of the consecutive limit discussed earlier in (2.21). To this end, in the second term in (4.22)

we relabel a ↔ b and use
⟨2b⟩
⟨1b⟩ +

[1a]

[2a]
= − [a| q12 |b⟩

⟨1b⟩[2a] . (4.23)

Hence we conclude that

DSL(0)(1+, 2−) = S(0)(1+)S(0)(2−) . (4.24)

Working out the first subleading contribution to the double-soft limit for the mixed helicity

assignments from (4.20) and (4.21) one finds for the non-contact terms

DSL(1)(1+, 2−)|nc =
1

q412

∑

a,b ̸=1,2

[1a]2 [1b] ⟨2a⟩ ⟨2b⟩2

⟨b1⟩ [2a]

(
[12]

[1a]
λα
2

∂

∂λα
a
− ⟨12⟩

⟨2b⟩ λ̃
α̇
1

∂

∂λ̃α̇
b

)

= S(0)(1+)S(1)(2−) + S(0)(2−)S(1)(1+) . (4.25)

where the same gauge choices for the reference spinors as above were made. This subleading

term also has a contribution from contact terms given by

DSL(1)(1+, 2−)|c =
1

q212

∑

b ̸=1,2

(
[1b]4 ⟨2b⟩3

[b2] (2pb · q12)2
+

[1b]3 ⟨2b⟩4

⟨b1⟩ (2pb · q12)2

)

=
1

q212

∑

b ̸=1,2

[1b]3 ⟨2b⟩3

[2b] ⟨1b⟩
1

2pb · q12
. (4.26)

We hence see, that a difference to the consecutive double-soft limit appears at the sublead-

ing order in the contact term above, cf. (2.26).

5 Double-soft scalars in N = 4 super Yang-Mills

The emission of a single soft scalar in N = 4 super Yang-Mills does not lead to any

divergence — the amplitude after a soft scalar has been emitted is in general finite. Thus,

the consecutive limit where two scalars are taken soft is also finite and not universal. It

is then interesting that the simultaneous double-soft scalar limit does lead to a universal

divergent structure, which can also be analysed using recursion relations.

To begin it is useful to look at simple examples. We take two scalars in a singlet

configuration, and consider the amplitudes A(1φ12 , 2φ34 , g3, g4, g5), where the helicities of

the gluons (g3, g4, g5) are a permutation of (−−+). It is then easy to extract the double-

soft limit:

A(1φ12 , 2φ34 , g3, g4, g5) → [23][15]⟨53⟩
s125s123[12]

A(g3, g4, g5) . (5.1)

Note that the prefactor appearing in this equation is divergent in the double-soft limit.

In the following we wish to derive such kind of behaviour from a recursion relation. One

direct approach is to perform the supersymmetric generalisation of the ⟨12]-shift used in

previous sections:

λ̂1 := λ1 + zλ2 ,
ˆ̃λ2 := λ̃2 − zλ̃1 , η̂2 = η2 − zη1 . (5.2)
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As in the bosonic case there are two special BCFW diagrams to consider: figure 1, where

the three-point amplitude sits on the left with the external legs 1̂ and n+2 and figure 2 with

the three-point amplitude on the right-hand side with external legs 2̂ and 3 (where now

particles 1 and 2 are scalars). If we take the holomorphic limit discussed in appendix B

for both particle 1 and 2 we will find the supersymmetric generalisation of the bosonic

1+2+ case. Instead we will consider taking the holomorphic limit of particle 1 and the

antiholomorphic limit of particle 2 which is the supersymmetric generalisation of the 1+2−

case; as in that case we find contributions from both BCFW diagrams. The calculation is

essentialy identical to the bosonic case and so we will omit the details. The contribution

from figure 1 is
∫

d4ηP AMHV
3 (n+2, 1̂, P̂ )

1

⟨1n+2⟩[n+21]
S̄(−P̂, 2̂, 3)An(−P̂, 3, . . . ) , (5.3)

where AMHV
3 is the supersymmetric MHV three-point amplitude and S̄(a, s, b) is the an-

tiholomorphic soft factor described in appendix B. Performing the integrations over the

internal Graßmann parameters we can extract the contribution to the appropriate double-

soft factor by examining the coefficient of the relevant η’s. For particle 1 and 2 being scalars

in the singlet state, i.e. the coefficient of the η21η
2
2 term, the leading order contribution is

DSLa(n+ 2, 1φ, 2φ, 3) =
⟨n+22⟩[n+23]⟨n+21⟩

2pn+2 · q12⟨12⟩⟨n+2|q12|3]
. (5.4)

The contribution from figure 2 is
∫

dηP S(n+ 2, 1̂, P̂ )An(n+ 2, P̂, . . . )
1

p223
AMHV

3 (2̂, 3,−P̂ ) , (5.5)

where now S(a, s, b) is the holomorphic factor in appendix B. This diagram contributes to

the singlet scalar double-soft coefficient the term

DSLb(n+ 2, 1φ, 2φ, 3) = − ⟨n+23⟩[31][32]
2p3 · q12⟨n+2|q12|3][12]

. (5.6)

To find the complete double soft factor we combine the two terms i.e.

DSL(n+ 2, 1φ, 2φ, 3) = DSLa(n+ 2, 1φ, 2φ, 3) + DSLb(n+ 2, 1φ, 2φ, 3) . (5.7)

For the sake of illustration, we derive the result (5.1) for the particular case of (g3, g4, g5) =

(3−, 4−, 5+), with the scalars in a flavour singlet configuration. Due to the three-particle

kinematics we have

λ̃3 ∝ λ̃4 ∝ λ̃5 , (5.8)

and hence for this particular choice the contribution from DSLa is zero. Moreover we

can exchange |5] and |3] in the expression DSLb as the constants of proportionality cancel

between the numerator and denominator, hence

DSLb(5, 1φ, 2φ, 3) = − ⟨53⟩[31][32]
⟨3|q12|3][1 2]⟨5|q12|3]

=
⟨53⟩[51][23]

⟨3|q12|3][1 2]⟨5|q12|5]
, (5.9)

in agreement with (5.1) at leading order in the double-soft expansion.
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Figure 5. The first BCFW diagram contributing to the double-soft scalar limit.

We can also re-derive this result from a different recursion relation, where we shift one

of the two soft particles and one hard particle. Taking again the scalars in positions 1 and

2, we shift one of the scalars, say 2, and an adjacent hard particle 3,

λ2̂ = λ2 + zλ3 , λ̃3̂ = λ̃3 − zλ̃2 , η3̂ = η3 − zη2 . (5.10)

There are two recursion diagrams to consider, shown in figures 5 and 6. We begin discussing

the first one, where we have a four-point amplitude with both soft legs attached to it. To

leading order in the soft parameter δ, the position of the pole in z is

z∗ =
2 pn · q12

⟨3n+2⟩[2n+2]
. (5.11)

The BCFW diagram in figure 5 is then

An+2 =

∫
d4ηP̂ A4(n+ 2, 1, 2̂, P̂ )

1

P 2
An(−P̂, 3̂, . . .) , (5.12)

where P 2 = (q12 + pn+2)2 ≃ 2q12 · pn+2, and the four-point superamplitude is explicitly

given by

A4(1, 2̂, P̂, n+2) =
δ(8)(λ1η1 + λ2̂η2 + λP̂ ηP̂ + λn+2ηn+2)

⟨12̂⟩⟨2̂P̂ ⟩⟨P̂ n+2⟩⟨n+21⟩
. (5.13)

We can re-write the fermionic delta function as

δ(8)(λ1η1 + λ2̂η2 + λP̂ ηP̂ + λn+2ηn+2) = ⟨2̂P̂ ⟩4 δ(4)
(
ηP̂ + η1

⟨12̂⟩
⟨P̂ 2̂⟩

+ ηn+2
⟨n+2 2̂⟩
⟨P̂ 2̂⟩

)

×δ(4)
(
η2 + η1

⟨1P̂ ⟩
⟨2̂P̂ ⟩

+ ηn+2
⟨n+2P̂ ⟩
⟨2̂P̂ ⟩

)
, (5.14)

thus getting

⟨2̂P̂ ⟩3

⟨12̂⟩⟨P̂ n+2⟩⟨n+21⟩
δ(4)
(
η2 + η1

⟨1P̂ ⟩
⟨2̂P̂ ⟩

+ ηn+2
⟨n+2P̂ ⟩
⟨2̂P̂ ⟩

)
An(−P̂, 3̂, . . . , n+1) , (5.15)
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Figure 6. The second BCFW diagram contributing to the double-soft scalar limit. This diagram
does not contribute when the two scalars are in a flavour non-singlet configuration.

where now An is evaluated at

ηP̂ = −η1
⟨12̂⟩
⟨P̂ 2̂⟩

− ηn+2
⟨n+2 2̂⟩
⟨P̂ 2̂⟩

. (5.16)

One can also easily work out6

⟨1P̂ ⟩ ∼ ⟨1n+2⟩ , ⟨2̂P̂ ⟩ ∼ ⟨1n+2⟩[n+21]

[n+22]
,

⟨P̂ n+2⟩ ∼ [1 2]⟨1n+2⟩
[n+22]

, ⟨12̂⟩ = ⟨n+21⟩⟨3|q12|n+2]

⟨3n+2⟩[n+22]
, (5.17)

so that (5.15) becomes

[n+21]3⟨3n+2⟩
[n+22][12]⟨3|q12|n+2]

δ(4)
(
η2 + η1

⟨1P̂ ⟩
⟨2̂P̂ ⟩

+ ηn+2
⟨n+2 P̂ ⟩
⟨2̂P̂ ⟩

)
An(−P̂, 3̂, . . . , n+1) . (5.18)

The second diagram is easily seen to contribute

⟨13⟩
⟨12⟩⟨23⟩ An+1

({
− λ1, λ̃1 + λ̃2

⟨23⟩
⟨13⟩ , η1 + η2

⟨23⟩
⟨13⟩

}
,

{
λ3, λ̃3 + λ2

⟨12⟩
⟨13⟩ , η3 +

⟨12⟩
⟨13⟩η2

}
, {4} . . . , {n+ 2}

)
, (5.19)

where we notice that the prefactor is divergent only if we simultaneously make the momenta

q1 and q2 soft.

At this point we have to take components of (the sum of) (5.18) and (5.19). One can

distinguish two basic cases, namely whether the two scalars are in a singlet or non-singlet

helicity configuration. In the latter case, only the recursion diagram in figure 5, given

by (5.18), contributes. For the sake of illustration, we derive the result (5.1) for the par-

ticular case of (g3, g4, g5) = (3−, 4−, 5+), with the scalars in a flavour singlet configuration.

For this particular choice, the diagram in figure 6 vanishes since the amplitude on the

6The ∼ sign means that an equality holds at leading order in the double-soft limit.
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left-hand side would have to be MHV, and thus vanishing given our choice of shifts. One

is then left with the contribution from figure 5, which is equal to

[51][52]⟨35⟩
⟨34⟩[34][1 2]⟨3|q12|5]

A3(3
−, 4−, 5+) , (5.20)

in agreement with (5.1) at leading order in the double-soft expansion.

Next we discuss another particularly simple situation, where particle 3 is a negative-

helicity gluon, and we take the two scalars in a non-singlet flavour configuration. In this

case the diagram of figure 6 does not contribute and furthermore there is only one way to

extract a contribution from the diagram in figure 5. Specifically, we take two powers of η2
and only one power of η1 from the δ(4) in (5.15), while the remaining power of η1 will come

from differentiating the amplitude on the right-hand side of the recursion. Doing so we get

⟨2̂P̂ ⟩3

⟨12̂⟩⟨P̂ n+2⟩⟨n+21⟩

(
⟨1P̂ ⟩
⟨2̂P̂ ⟩

)(
⟨n+2 P̂ ⟩
⟨2̂P̂ ⟩

)(
⟨1 2̂⟩
⟨2̂P̂ ⟩

)

· ϵa1a2a3a4η
a1
2 ηa22 ηa31 ηa4n+2 η

a5
1

∂

∂ηa5
P̂

An(−P̂, 3̂, . . . n+1) , (5.21)

which after using (5.17) becomes simply

An+2 →
1

pn+2 · q12
ϵa1a2a3a4η

a1
2 ηa22 ηa31 ηa4n+2 η

a5
1

∂

∂ηa5
P̂

An(−P̂, g−3 , . . . n+1) , (5.22)

where we recall that we selected particle 3 to be a gluon of negative helicity. This con-

tribution diverges as 1/δ in the double-soft limit. We also note that this case is entirely

similar to that discussed in [31] (however note that in that case, particle 3 was replaced by

an auxiliary negative-helicity graviton, which was taken soft and decoupled at the end of

the calculation).
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A Sub-subleading terms

We can continue our analysis of the double-soft terms in the gravitational case to the

sub-subleading terms. For the consecutive double-soft limit we have we have

CSL(2)(1+, 2±) = S(1)(q±2 )S
(1)(q+1 ) + S(0)(q±2 )S

(2)(q+1 ) + S(2)(q±2 )S
(1)(q+1 ) . (A.1)
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The 1+2+ case. A brief calculation shows that in the case of two positive helicity gluons

CSL(2)(1+, 2+) = − [12]

⟨12⟩2
∑

a ̸=1,2

⟨a|q12|a]
[2∂ã]

⟨1a⟩

+
1

2⟨12⟩2
∑

a,b ̸=1,2

[2a][1b]

⟨2a⟩⟨1b⟩
(
⟨1a⟩[1∂b̃]− ⟨2b⟩[2∂ã]

)2
(A.2)

where we have used the notation [1∂ã] = λ̃
α̇
1

∂

∂λ̃
α̇
a

etc. Because of the contact term the

antisymmetric combination is non-trivial and can be simplified to

aCSL(2)(1+, 2+) = − [12]

2⟨12⟩2
∑

a ̸=1,2

(
⟨1a⟩
⟨2a⟩ [1a][1∂ã]−

⟨2a⟩
⟨1a⟩ [2a][2∂ã]

)
. (A.3)

The 1+2− case. For the mixed helicity case we find

CSL(2)(1+, 2−) =
1

[12]⟨12⟩
∑

a ̸=1,2

[1a]⟨2a⟩4

⟨1a⟩3

+
∑

a ̸=1,2

⟨2a⟩2[1a]
[2a]⟨1a⟩2

(
[1a]

[12]
[1∂ã]−

⟨2a⟩
2⟨21⟩⟨2∂a⟩

)

+
1

2

∑

a,b ̸=1,2

⟨2a⟩[1b]
[2a]⟨1b⟩

(
[1a]

[12]
[1∂b̃]−

⟨2b⟩
⟨21⟩⟨2∂a⟩

)2

(A.4)

where in the last line the expression should be understood with the derivatives always to

the right, i.e. they don’t act on the λ/λ̃’s in the double-soft factor itself. Of particular

interest is the first term which arises as a contact term but one where the derivatives act

on the soft momenta and so this term in fact has scaling behaviour of the same order

as CSL(1).

B Supersymmetric Yang-Mills soft limits

It is straightforward to consider the supersymmetric generalisation of the previous calcu-

lations. Let us briefly review the single soft case in Yang-Mills. Given an (n+1)-point

superamplitude the soft limit, with particle 1 being soft, is naturally taken as

{λ1, λ̃1, η1} → {
√
δλ1,

√
δλ̃1, η1} (B.1)

with δ → 0. In particular with this choice of scaling both q =
∑

i λiηi and q̃ =
∑

i λ̃i
∂
∂ηi

scale identically. Using the little transformation of the superamplitude, this implies

An+1({
√
δλ1,

√
δλ̃1, η1}) = δAn+1

({
δλ1, λ̃1,

1√
δ
η1

})
. (B.2)

However the analysis of this limit seems more complicated via BCFW due to the number

of diagrams contributing. Instead we can consider, following [21, 45],

{λ1, λ̃1, η1} → {
√
δλ1,

√
δλ̃1,

√
δη1} . (B.3)
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Hence, after using the little scaling, we find the holomorphic limit of the superamplitude,

lim
δ→0

An+1({δλ1, λ̃1, η1}) =

[
1

δ2
S(0)(n, s, 2) +

1

δ
S(1)(n, s, 2)

]
An

≡ S(n, s, 2)An (B.4)

which defines the holomorphic soft factor S(n, s, 2) given by, see [21],

S(k)(n, s, 2) =
1

k!

⟨n2⟩
⟨ns⟩⟨s2⟩

[
⟨sn⟩
⟨2n⟩

(
λ̃s ·

∂

∂λ̃2

+ ηs ·
∂

∂η2

)
+

⟨s2⟩
⟨n2⟩

(
λ̃s ·

∂

∂λ̃n

+ ηs ·
∂

∂ηn

)]k
.

(B.5)

We can also consider the anti-holomorphic limit [21], under which

lim
δ→0

An+1({λ1, δλ̃1, η1}) =

[
1

δ2
S̄
(0)

(n, s, 2) +
1

δ
S̄
(1)

(n, s, 2)

]
An

≡ S̄(n, s, 2)An , (B.6)

where the anti-holomorphic soft factor is given by

S̄
(k)

(n, s, 2) =
1

k!

[n2]

[ns][s2]
δ(4)
(
ηs+δ

[ns]

[2n]
η2+δ

[s2]

[2n]
ηn

)[
[sn]

[2n]
λs·

∂

∂λ2
+
[s2]

[n2]
λs·

∂

∂λn

]k
. (B.7)
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