50 research outputs found

    On the annual variability of Antarctic aerosol size distributions at Halley Research Station

    Get PDF
    The Southern Ocean and Antarctic region currently best represent one of the few places left on our planet with conditions similar to the preindustrial age. Currently, climate models have a low ability to simulate conditions forming the aerosol baseline; a major uncertainty comes from the lack of understanding of aerosol size distributions and their dynamics. Contrasting studies stress that primary sea salt aerosol can contribute significantly to the aerosol population, challenging the concept of climate biogenic regulation by new particle formation (NPF) from dimethyl sulfide marine emissions. We present a statistical cluster analysis of the physical characteristics of particle size distributions (PSDs) collected at Halley (Antarctica) for the year 2015 (89 % data coverage; 6-209 nm size range; daily size resolution). By applying the Hartigan-Wong k-mean method we find eight clusters describing the entire aerosol population. Three clusters show pristine average low particle number concentrations (<121-179 cm(-3)) with three main modes (30, 75-95 and 135-160 nm) and represent 57 % of the annual PSD (up to 89 %-100 % during winter and 34 %-65 % during summer based on monthly averages). Nucleation and Aitken mode PSD clusters dominate summer months (SeptemberJanuary, 59 %-90 %), whereas a clear bimodal distribution (43 and 134 nm, respectively; Hoppel minimum at mode 75 nm) is seen only during the December-April period (6%-21 %). Major findings of the current work include: (1) NPF and growth events originate from both the sea ice marginal zone and the Antarctic plateau, strongly suggesting multiple vertical origins, including the marine boundary layer and free troposphere; (2) very low particle number concentrations are detected for a substantial part of the year (57 %), including summer (34 %-65 %), suggesting that the strong annual aerosol concentration cycle is driven by a short temporal interval of strong NPF events; (3) a unique pristine aerosol cluster is seen with a bimodal size distribution (75 and 160 nm, respectively), strongly associated with high wind speed and possibly associated with blowing snow and sea spray sea salt, dominating the winter aerosol population (34 %-54 %). A brief comparison with two other stations (Dome C - Concordia- and King Sejong Station) during the year 2015 (240 d overlap) shows that the dynamics of aerosol number concentrations and distributions are more complex than the simple sulfate-sea-spray binary combination, and it is likely that an array of additional chemical components and processes drive the aerosol population. A conceptual illustration is proposed indicating the various atmospheric processes related to the Antarctic aerosols, with particular emphasis on the origin of new particle formation and growth.Peer reviewe

    Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions

    Get PDF
    Abstract. A chemical reaction chamber system has been developed for the processing of oleic acid aerosol particles with ozone under two relative humidity conditions: dry and humidified to 65 % R.H. The apparatus consists of an aerosol flow tube, in which the ozonolysis occurs, coupled to a scanning mobility particle sizer (SMPS) and an aerosol time-of-flight mass spectrometer (ATOFMS) which measure the evolving particle size and composition. Under both relative humidity conditions, ozonolysis results in a significant decrease in particle size and mass which is consistent with the formation of volatile products that partition from the particle to the gas phase. Mass spectra derived from the ATOFMS reveal the presence of the typically observed reaction products: azaleic acid, nonanal, oxononanoic acid and nonanoic acid, as well as a range of higher molecular weight products deriving from the reactions of reaction intermediates with oleic acid and its oxidation products. These include octanoic acid, and 9- and 10-oxooctadecanoic acid, as well as products of considerably higher molecular weight. Quantitative evaluation of product yields with the ATOFMS shows a marked dependence upon both particle size association (from 0.3 to 2.1 µm diameter) and relative humidity. Under dry conditions, the percentage residual oleic acid increases with increasing particle size, as does the percentage of higher molecular weight products, due to the poorer internal mixing of the larger particles. The main lower molecular weight products are nonanal and oxonononic acid. Under humidified conditions, the percentage unreacted oleic acid is greater, except in the smallest particle fraction, and oxononanoic acid dominates the product distribution, with little formation of high molecular weight products relative to the dry particles. It is postulated that water reacts with reactive intermediates, competing with the processes which produce high molecular weight products. Whilst the oleic acid model aerosol system is of limited relevance to complex internally mixed atmospheric aerosol, the generic findings presented in this paper give useful insights into the nature of heterogeneous chemical processes. </jats:p

    Formen und Dynamiken politscher Gewalt in den Philippinen

    Get PDF
    Obwohl die Philippinen gemeinhin als die älteste Demokratie Südostasiens gelten, dominieren in der Politik immer noch mächtige Familien, die gegen Kritiker ihrer Macht notfalls zum Mittel der Gewalt greifen. In den letzten Jahren sind mehrere hundert extralegale Tötungen dokumentiert. Starke politische Führer tolerieren auch die mehrhundert­fachen Morde von Kriminellen durch selbsternannte Wächter der herrschenden Ordnung. Als dritte Form wird politische Gewalt in der Konkurrenz zwischen verschiedenen Elitefamilien insbesondere auf der lokalen Ebene im ländlichen Raum analysiert. Alle drei Formen der Gewalt sind politisch, als sie der sozialen Kontrolle devianter Gruppen dienen, den Zugang zu Herrschaftspositionen beschränken und die faktischen Herrschaftsverhältnisse gegenüber der Bevölkerung symbolisieren. Allen Gewaltformen gemein ist, dass der Staat sie weder verhindern kann, noch im Regelfall die Täter ermittelt und bestraft. Der Blick auf die Details der Gewaltphänomene macht sichtbar, dass die offensichtliche Schwäche des Staates eine notwendige Bedingung der Aufrechterhaltung der klientelistischen Herrschaft durch „politische Familien“ und „Strongmen“ bildet. Die Schwäche des Staates ist in diesem Sinn funktional im Sinn der Aufrechterhaltung der Herrschaft der Wenigen über die Vielen. Der politischen Gewalt in den Philippinen durch Demokratisierung, etwa in Form von stärkerer Dezentralisierung entgegenzuwirken, erscheint nicht erfolgversprechend. Die Reformvorschläge im Report sind auf gezielte Veränderungen des institutionellen Rahmens politischen Handelns gerichtet. Es werden Reformen im Bereich des Polizei- und des Wahlrechts sowie die Abschaffung spezifischer staatlicher Finanzmittel empfohlen, die zentral für die Stabilisierung von Patronagesystemen im ländlichen Raum sind

    Correlations in the chemical composition of rural background atmospheric aerosol in the UK determined in real time using time-of-flight mass spectrometry

    Get PDF
    An aerosol time-of-flight mass spectrometer (ATOFMS) was used to determine, in real time, the size and chemical composition of individual particles in the atmosphere at the remote inland site of Eskdalemuir, Scotland. A total of 51980 particles, in the size range 0.3–7.4 µm, were detected between the 25th and 30th June 2001. Rapid changes in the number density, size and chemical composition of the atmospheric aerosol were observed. These changes are attributed to two distinct types of air mass; a polluted air mass that had passed over the British mainland before reaching Eskdalemuir, interposed between two cleaner air masses that had arrived directly from the sea. Such changes in the background aerosol could clearly be very important to studies of urban aerosols and attempts at source apportionment. The results of an objective method of data analysis are presented. Correlations were sought between the occurrence of: lithium, potassium, rubidium, caesium, beryllium, strontium, barium, ammonium, amines, nitrate, nitrite, boron, mercury, sulfate, phosphate, fluorine, chlorine, bromine, iodine and carbon (both elemental and organic hydrocarbon) in both fine (d 2.5 µm) particle fractions. Several previously unreported correlations were observed, for instance between the elements lithium, beryllium and boron. The results suggest that about 2 in 3 of all fine particles (by number rather than by mass), and 1 in 2 of all coarse particles containing carbon, consisted of elemental carbon rather than organic hydrocarbon (although a bias in the sensitivity of the ATOFMS could have affected these numbers). The ratio of the number of coarse particles containing nitrate anions to the number of particles containing chloride anions exceeded unity when the air mass had travelled over the British mainland. The analysis also illustrates that an air mass of marine origin that had travelled slowly over agricultural land can accumulate amines and ammonium

    Source apportionment of particle number size distribution in urban background and traffic stations in four European cities

    Get PDF
    Ultrafine particles (UFP) are suspected of having significant impacts on health. However, there have only been a limited number of studies on sources of UFP compared to larger particles. In this work, we identified and quantified the sources and processes contributing to particle number size distributions (PNSD) using Positive Matrix Factorization (PMF) at six monitoring stations (four urban background and two street canyon) from four European cities: Barcelona, Helsinki, London, and Zurich. These cities are characterised by different meteorological conditions and emissions. The common sources across all stations were Photonucleation, traffic emissions (3 sources, from fresh to aged emissions: Traffic nucleation, Fresh traffic – mode diameter between 13 and 37 nm, and Urban – mode diameter between 44 and 81 nm, mainly traffic but influenced by other sources in some cities), and Secondary particles. The Photonucleation factor was only directly identified by PMF for Barcelona, while an additional split of the Nucleation factor (into Photonucleation and Traffic nucleation) by using NOx concentrations as a proxy for traffic emissions was performed for all other stations. The sum of all traffic sources resulted in a maximum relative contributions ranging from 71 to 94% (annual average) thereby being the main contributor at all stations. In London and Zurich, the relative contribution of the sources did not vary significantly between seasons. In contrast, the high levels of solar radiation in Barcelona led to an important contribution of Photonucleation particles (ranging from 14% during the winter period to 35% during summer). Biogenic emissions were a source identified only in Helsinki (both in the urban background and street canyon stations), that contributed importantly during summer (23% in urban background). Airport emissions contributed to Nucleation particles at urban background sites, as the highest concentrations of this source took place when the wind was blowing from the airport direction in all cities.Ultrafine particles (UFP) are suspected of having significant impacts on health. However, there have only been a limited number of studies on sources of UFP compared to larger particles. In this work, we identified and quantified the sources and processes contributing to particle number size distributions (PNSD) using Positive Matrix Factorization (PMF) at six monitoring stations (four urban background and two street canyon) from four European cities: Barcelona, Helsinki, London, and Zurich. These cities are characterised by different meteorological conditions and emissions. The common sources across all stations were Photonucleation, traffic emissions (3 sources, from fresh to aged emissions: Traffic nucleation, Fresh traffic - mode diameter between 13 and 37 nm, and Urban - mode diameter between 44 and 81 nm, mainly traffic but influenced by other sources in some cities), and Secondary particles. The Photonucleation factor was only directly identified by PMF for Barcelona, while an additional split of the Nucleation factor (into Photonucleation and Traffic nucleation) by using NOx concentrations as a proxy for traffic emissions was performed for all other stations. The sum of all traffic sources resulted in a maximum relative contributions ranging from 71 to 94% (annual average) thereby being the main contributor at all stations. In London and Zurich, the relative contribution of the sources did not vary significantly between seasons. In contrast, the high levels of solar radiation in Barcelona led to an important contribution of Photonucleation particles (ranging from 14% during the winter period to 35% during summer). Biogenic emissions were a source identified only in Helsinki (both in the urban background and street canyon stations), that contributed importantly during summer (23% in urban background). Airport emissions contributed to Nucleation particles at urban background sites, as the highest concentrations of this source took place when the wind was blowing from the airport direction in all cities.Peer reviewe

    Road Traffic Emissions Lead to Much Enhanced New Particle Formation through Increased Growth Rates

    Get PDF
    New particle formation (NPF) is a major source of atmospheric aerosol particles, including cloud condensation nuclei (CCN), by number globally. Previous research has highlighted that NPF is less frequent but more intense at roadsides compared to urban background. Here, we closely examine NPF at both background and roadside sites in urban Central Europe. We show that the concentration of oxygenated organic molecules (OOMs) is greater at the roadside, and the condensation of OOMs along with sulfuric acid onto new particles is sufficient to explain the growth at both sites. We identify a hitherto unreported traffic-related OOM source contributing 29% and 16% to total OOMs at the roadside and background, respectively. Critically, this hitherto undiscovered OOM source is an essential component of urban NPF. Without their contribution to growth rates and the subsequent enhancements to particle survival, the number of &gt;50 nm particles produced by NPF would be reduced by a factor of 21 at the roadside site. Reductions to hydrocarbon emissions from road traffic may thereby reduce particle numbers and CCN counts.</p

    Systemic and Mucosal Immune Responses to Sublingual or Intramuscular Human Papilloma Virus Antigens in Healthy Female Volunteers

    Get PDF
    The sublingual route has been proposed as a needle-free option to induce systemic and mucosal immune protection against viral infections. In a translational study of systemic and mucosal humoral immune responses to sublingual or systemically administered viral antigens, eighteen healthy female volunteers aged 19–31 years received three immunizations with a quadravalent Human Papilloma Virus vaccine at 0, 4 and 16 weeks as sublingual drops (SL, n = 12) or intramuscular injection (IM, n = 6). IM antigen delivery induced or boosted HPV-specific serum IgG and pseudovirus-neutralizing antibodies, HPV-specific cervical and vaginal IgG, and elicited circulating IgG and IgA antibody secreting cells. SL antigens induced ∼38-fold lower serum and ∼2-fold lower cervical/vaginal IgG than IM delivery, and induced or boosted serum virus neutralizing antibody in only 3/12 subjects. Neither route reproducibly induced HPV-specific mucosal IgA. Alternative delivery systems and adjuvants will be required to enhance and evaluate immune responses following sublingual immunization in humans
    corecore