32 research outputs found

    A second-order closure analysis of turbulent diffusion flames

    Get PDF
    A complete second-order closure computer program for the investigation of compressible, turbulent, reacting shear layers was developed. The equations for the means and the second order correlations were derived from the time-averaged Navier-Stokes equations and contain third order and higher order correlations, which have to be modeled in terms of the lower-order correlations to close the system of equations. In addition to fluid mechanical turbulence models and parameters used in previous studies of a variety of incompressible and compressible shear flows, a number of additional scalar correlations were modeled for chemically reacting flows, and a typical eddy model developed for the joint probability density function for all the scalars. The program which is capable of handling multi-species, multistep chemical reactions, was used to calculate nonreacting and reacting flows in a hydrogen-air diffusion flame

    Combustion response of ammonium perchlorate

    Full text link

    Solid Rocket Motor Internal Ballistics Simulation Using Three-Dimensional Grain Burnback

    Get PDF
    Internal ballistics simulations of solid rocket motors have been conducted with the propellant grain???s 3-D burning surface geometry described by a new minimum distance function approach and the internal flowfield represented by 1-D, time-dependent, single-phase compressible flow equations. The combustion model includes erosive burning and unsteady, dynamic burning corresponding to transient energy storage in the heated surface layer of the propellant. The integrated internal ballistics code (Rocballist) is used to investigate the role of these two burning rate augmenting mechanisms in solid rocket motor performance. Two tactical motors are used as test cases. Results indicate that dynamic burning can be the dominant factor in producing a short-duration ignition pressure spike in low-L???? motors, particularly if the L=D ratio is not too large and the port cross section is nonrestrictive (e.g., center perforated grain). However, when L=D is large and the port cross section is noncircular in the aft section (aft fins/slots), erosive burning can take over in dominating the burning rate to the extent that an otherwise progressive pressure-time trace becomes regressive/neutral. That is, erosive burning can effectively prolong the initial pressure spike in some star-aft motors. The results also show that with sufficiently accurate models of dynamic burning and erosive burning, it is reasonable to expect reliable internal ballistics predictions with suitable simplified flowfield models, thereby realizing significant reductions in computation time compared with 3-D, multiphase reacting flow simulations.published or submitted for publicationis peer reviewe
    corecore