14 research outputs found

    The shape of "dark matter" halos in disc galaxies according to the modified dynamics

    Full text link
    Analyses of halo shapes for disc galaxies are said to give incongruous results. I point out that the modified dynamics (MOND) predicts for disc galaxies a distribution of fictitious dark matter that comprises two components: a pure disc and a rounder halo. The former dominates the true disc in regions of small accelerations, where it controls the z-dynamics in the disc (disc flaring etc.); it has a finite total mass. It also dominates the round component near the centre where the geometry is nearly planar. The second component controls motions far from the plane, has a total enclosed mass that diverges linearly with radius, and determines the rotation curve at large radii. Its ellipticity may be appreciable at small radii but vanishes asymptotically. This prediction of MOND differs from what one expects from galaxy-formation scenarios with dark matter. Analyses to date, which, as they do, assume one component--usually with a constant ellipticity, perforce give conflicting results for the best-value ellipticity, depending on whether they probe the disc or the sphere, small radii or large ones.Comment: 8 page

    The Flattened Dark Matter Halo of M31 as Deduced from the Observed HI Scale Heights

    Get PDF
    In this paper, we use the outer-galactic HI scale height data as well as the observed rotation curve as constraints to determine the halo density distribution of the Andromeda galaxy (M31). We model the galaxy as a gravitationally-coupled system of stars and gas, responding to the external force-field of a known Hernquist bulge and the dark matter halo, the density profile of the latter being characterized by four free parameters. The parameter space of the halo is optimized so as to match the observed HI thickness distribution as well as the rotation curve on an equal footing, unlike the previous studies of M31 which were based on rotation curves alone. We show that an oblate halo, with an isothermal density profile, provides the best fit to the observed data. This gives a central density of 0.011 M_sun /pc^3, a core radius of 21 kpc, and an axis ratio of 0.4. The main result from this work is the flattened dark matter halo for M31, which is required to match the outer galactic HI scale height data. Interestingly, such flattened halos lie at the most oblate end of the distribution of halo shapes found in recent cosmological simulations.Comment: 21 pages, 6 figures, accepted for publication in the Astrophysical Journa

    Great Circle tidal streams: evidence for a nearly spherical massive dark halo around the Milky Way

    Get PDF
    An all high-latitude sky survey for cool carbon giant stars in the Galactic halo has revealed 75 such stars, of which the majority are new detections. Of these, more than half are clustered on a Great Circle on the sky which intersects the center of Sagittarius dwarf galaxy (Sgr) and is parallel to its proper motion vector, while many of the remainder are outlying Magellanic Cloud C-stars. A pole-count analysis of the carbon star distribution clearly indicates that the Great Circle stream we have isolated is statistically significant, being a 5-6 sigma over-density. These two arguments strongly support our conclusion that a large fraction of the Halo carbon stars originated in Sgr. The stream orbits the Galaxy between the present location of Sgr, 16 kpc from the Galactic center, and the most distant stream carbon star, at ~60 kpc. It follows neither a polar nor a Galactic plane orbit, so that a large range in both Galactic R and z distances are probed. That the stream is observed as a Great Circle indicates that the Galaxy does not exert a significant torque upon the stream, so the Galactic potential must be nearly spherical in the regions probed by the stream. We present N-body experiments simulating this disruption process as a function of the distribution of mass in the Galactic halo. A likelihood analysis shows that, in the Galactocentric distance range 16 kpc < R < 60 kpc, the dark halo is most likely almost spherical. We rule out, at high confidence levels, the possibility that the Halo is significantly oblate, with isodensity contours of aspect q_m < 0.7. This result is quite unexpected and contests currently popular galaxy formation models. (Abridged)Comment: 26 pages, 13 figures (6 in color, 8 chunky due to PS compression), minor revisions, accepted by Ap

    The cold gaseous halo of NGC 891

    Get PDF
    We present HI observations of the edge-on galaxy NGC 891. These are among the deepest ever performed on an external galaxy. They reveal a huge gaseous halo, much more extended than seen previously and containing almost 30 % of the HI. This HI halo shows structures on various scales. On one side, there is a filament extending (in projection) up to 22 kpc vertically from the disk. Small (M_HI ~ 10^6 Msol) halo clouds, some with forbidden (apparently counter-rotating) velocities, are also detected. The overall kinematics of the halo gas is characterized by differential rotation lagging with respect to that of the disk. The lag, more pronounced at small radii, increases with height from the plane. There is evidence that a significant fraction of the halo is due to a galactic fountain. Accretion from intergalactic space may also play a role in building up the halo and providing low angular momentum material needed to account for the observed rotation lag. The long HI filament and the counter-rotating clouds may be direct evidence of such accretion.Comment: Accepted for publication in The Astronomical Journal. High-resolution version available at http://www.astron.nl/~oosterlo/n891Pape

    A Pressure Anomaly for HII Regions in Irregular Galaxies

    Get PDF
    The pressures of giant HII regions in 6 dwarf Irregular galaxies are a factor of ~10 larger than the average pressures of the corresponding galaxy disks, obtained from the stellar and gaseous column densities. Either the visible HII regions in these dwarfs are all so young that they are still expanding, or there is an unexpected source of disk self-gravity that increases the background pressure. We consider the possibility that the additional self-gravity comes from disk dark matter, but suggest this is unlikely because the vertical scale heights inferred for Irregular galaxies are consistent with the luminous matter alone. Some of the HII region overpressure is probably the result of local peaks in the gravitational field that come from large gas concentrations, many of which are observed directly. These peaks also explain the anomalously low average column density thresholds for star formation that were found earlier for Irregular galaxies, and they permit the existence of a cool HI phase as the first step toward dense molecular cores. Many of the HII regions could also be so strongly over-pressured that they will expand for a long time. In this case, the observed population would be only 7% of the total, and the aging HII regions, now too faint to see, should occupy nearly the entire dwarf galaxy volume. Such prolonged HII region expansion would explain the origin of the giant HI shells that are seen in these galaxies, and account for the lack of bright central clusters inside these shells.Comment: 27 pages, 4 figures, Astrophysical Journal, 540, Sep 10, 2000, in pres

    The Shape and Figure Rotation of NGC 2915's Dark Halo

    Get PDF
    NGC 2915 is a blue compact dwarf galaxy with a very extended HI disk showing a short central bar and extended spiral arms, both reaching far beyond the optical component. We use Tremaine & Weinberg (1984) method to measure the pattern speed of the bar from HI radio synthesis data. Our measurements yield a pattern speed of 0.21+/-0.06 km/s/arcsec (8.0+/-2.4 km/s/kpc for D=5.3 Mpc), in disagreement with the general view that corotation in barred disks lies just outside the end of the bar, but consistent with recent models of barred galaxies with dense dark matter halos. Our adopted bar semi-length puts corotation at more than 1.7 bar radii. The existence of the pattern is also problematic. Because NGC 2915 is isolated, interactions cannot account for the structure observed in the HI disk. We also demonstrate that the low observed disk surface density and the location of the pseudo-rings make it unlikely that swing amplification or bar-driven spiral arms could explain the bar and spiral pattern. Based on the similarity of the dark matter and HI surface density profiles, we discuss the possibility of dark matter distributed in a disk and following closely the HI distribution. The disk then becomes unstable and can naturally form a bar and spiral pattern. However, this explanation is hard to reconcile with some properties of NGC 2915. We also consider the effect of a massive and extended triaxial dark matter halo with a rotating figure. The existence of such halos is supported by CDM simulations showing strongly triaxial dark halos with slow figure rotation. The observed structure of the HI disk can then arise through forcing by the rotating triaxial figure. We associate the measured pattern speed in NGC 2915 with the figure rotation of its dark halo.Comment: 37 pages, including 8 figures and 2 tables (AASTeX, aaspp4.sty). Fig.1 and 2 available as jpg. Accepted for publication in The Astronomical Journal. Online manuscript with PostScript figures available at: http://www.strw.leidenuniv.nl/~bureau/pub_list.htm

    The thickness of HI in galactic discs under MOND: theory and application to the Galaxy

    Full text link
    The outskirts of galaxies are a very good laboratory for testing the nature of the gravitational field at low accelerations. By assuming that the neutral hydrogen gas is in hydrostatic equilibrium in the gravitational potential of the host galaxy, the observed flaring of the gas layer can be used to test modified gravities. For the first time we construct a simple framework to derive the scaleheight of the neutral hydrogen gas disc in the MOND scenario and apply this to the Milky Way. It is shown that using a constant gas velocity dispersion of ~9 km/s, MOND is able to give a very good fit to the observed HI flaring beyond a galactocentric distance of 17 kpc up to the last measured point (~40 kpc). Between 10 and 16 kpc, however, the observed scaleheight is about 40% more than what MOND predicts for the standard interpolating function and 70% for the form suggested by Famaey & Binney. Given the uncertainties in the non-thermal pressure support by cosmic rays and magnetic fields, MOND seems to be a plausible alternative to dark matter in explaining the Milky Way flaring. Studying the flaring of extended HI discs in external edge-on galaxies may be a promising approach to assess the viability of MOND.Comment: 13 pages, 4 figure

    On the Spiral Structure of NGC 2915 and Dark Matter

    Get PDF
    NGC 2915 is a blue compact dwarf galaxy embedded in an extended, low surface brightness HI disk exhibiting a two-armed spiral structure and a central bar-like component. Commonly accepted mechanisms are unable to explain the existence of these patterns and Bureau et al. proposed disk dark matter (scaling with the HI distribution) or a rotating triaxial dark halo as alternative solutions. In an attempt to explore these mechanisms, hydrodynamical simulations were run for each case and compared to observations using customized column density and kinematic constraints. The spiral structure can be accounted for both by an unseen bar or triaxial halo, the former fitting the observations slightly better. However, the large bar mass or halo pattern frequency required make it unlikely that the spiral wave is driven by an external perturber. In particular, the spin parameter is much higher than predicted by current cold dark matter (CDM) structure formation scenarios. The massive disk models show that when the observed gas surface density is scaled up by a factor about 10, the disk develops a spiral structure resembling closely the observed one, in perturbed density as well as perturbed velocity. This is consistent with more limited studies in other galaxies and suggests that the disk of NGC 2915 contains much more mass than is visible, tightly linked to the neutral hydrogen. A classic (quasi-)spherical halo is nevertheless still required, as increasing the disk mass further to fit the circular velocity curve would make the disk violently unstable. Scaling the observed surface density profile by an order of magnitude brings the disk and halo masses to comparable values within the disk radius.Comment: Accepted for publication in ApJ. Full resolution figures available at http://www.star.qmul.ac.uk/~masset/publications.htm
    corecore