834 research outputs found

    Sound shield

    Get PDF
    An improved test section for a supersonic or hypersonic wind tunnel is disclosed wherein the model tested is shielded from the noise normally radiated by the turbulent tunnel wall boundary layer. A vacuum plenum surrounds spaced rod elements making up the test chamber to extract some of the boundary layer as formed along the rod elements during a test to thereby delay the tendency of the rod boundary layers to become turbulent. Novel rod construction involves bending each rod slightly prior to machining the bent area to provide a flat segment on each rod for connection with the flat entrance fairing. Rods and fairing are secured to provide a test chamber incline on the order of 1 deg outward from the noise shield centerline to produce up to 65% reduction of the root mean square (rms) pressure over previously employed wind tunnel test sections at equivalent Reynolds numbers

    Wind tunnel blockage tests at Mach 5 of vacuum duct models for two sound radiation shields

    Get PDF
    Two sound shield models with dummy vacuum exhaust ducts were tested in a Mach 5 pilot quiet tunnel. The first model simulates a new sound shield of 3 in. (7.62 cm) inside diameter and the second model is a shield of 4 in. (10.16 cm) inside diameter. The dummy vacuum exhaust ducts were attached to the external housing of the models. The flow in the first model, which had a by pass mass flow ratio of about 0.6, could not be started except at the two highest test Reynolds numbers where only the central core flow region was started. The flow in the second model with a mass ratio of approximately 0.3 was fully started except at the lowest unit Reynolds number where some unsteadiness and partial flow separation at the wall was observed. Since the external housing and dummy vacuum ducts were the same for both models, these results indicate that the ratio of by pass mass flow to total mass flow for a wind tunnel sound shield of this particular design must be less than about 0.3. Hence, a lower limit is imposed on the inlet diameter of the sound shield in relation to the exit diameter of the wind tunnel nozzle. This lower limit on the inlet diameter may possibly be reduced by improvements in streamlining of the external housing and ducts, by reductions in blockage area, or by the use of external ducting shrouds

    Calculation of mean and fluctuating properties of the incompressible turbulent boundary layer

    Get PDF
    Mathematical model for calculation of mean and fluctuating properties of incompressible turbulent boundary layer

    Comments on settling chamber design for quiet, blowdown wind tunnels

    Get PDF
    Transfer of an existing continous circuit supersonic wind tunnel to Langley and its operation there as a blowdown tunnel is planned. Flow disturbance requirements in the supply section and methods for reducing the high level broad band acoustic disturbances present in typical blowdown tunnels are reviewed. Based on recent data and the analysis of two blowdown facilities at Langley, methods for reducing the total turbulence levels in the settling chamber, including both acoustic and vorticity modes, to less than one percent are recommended. The pertinent design details of the damping screens and honeycomb and the recommended minimum pressure drop across the porous components providing the required two orders of magnitude attenuation of acoustic noise levels are given. A suggestion for the support structure of these high pressure drop porous components is offered

    Computer program for compressible laminar or turbulent nonsimilar boundary layers

    Get PDF
    Description of computer program for solving two dimensional and axisymmetric forms of compressible boundary layer equations for continuity, mean momentum, and mean total enthalp

    Correlations of supersonic boundary-layer transition on cones including effects of large axial variations in wind-tunnel noise

    Get PDF
    Transition data on sharp tip cones in two pilot low disturbance wind tunnels at Mach numbers of 3.5 and 5 were correlated in terms of noise parameters with data from several conventional wind tunnels and with data from supersonic flight tests on a transition cone. The noise parameters were developed to account for the large axial variations of the free stream noise and the very high frequency noise spectra that occurred in the low disturbance tunnels for some test conditions. The noise could be varied in these tunnels from high levels, approaching those in conventional tunnels, to extremely low levels. The correlations indicated that transition in the low disturbance tunnels was dominated by the local stream noise that was incident on the cone boundary layer unstream of the neutral stability point. The correlation results also suggested that high frequency components of the low disturbance tunnel noise spectra had significant effects on transition when the noise was incident on the boundary layer both upstream and downstream of the neutral stability point

    Noise reduction in a Mach 5 wind tunnel with a rectangular rod-wall sound shield

    Get PDF
    A rod wall sound shield was tested over a range of Reynolds numbers of 0.5 x 10 to the 7th power to 8.0 x 10 to the 7th power per meter. The model consisted of a rectangular array of longitudinal rods with boundary-layer suction through gaps between the rods. Suitable measurement techniques were used to determine properties of the flow and acoustic disturbance in the shield and transition in the rod boundary layers. Measurements indicated that for a Reynolds number of 1.5 x 10 to the 9th power the noise in the shielded region was significantly reduced, but only when the flow is mostly laminar on the rods. Actual nozzle input noise measured on the nozzle centerline before reflection at the shield walls was attenuated only slightly even when the rod boundary layer were laminar. At a lower Reynolds number, nozzle input noise at noise levels in the shield were still too high for application to a quiet tunnel. At Reynolds numbers above 2.0 x 10 the the 7th power per meter, measured noise levels were generally higher than nozzle input levels, probably due to transition in the rod boundary layers. The small attenuation of nozzle input noise at intermediate Reynolds numbers for laminar rod layers at the acoustic origins is apparently due to high frequencies of noise

    Control of supersonic wind-tunnel noise by laminarization of nozzle-wall boundary layer

    Get PDF
    One of the principal design requirements for a quiet supersonic or hypersonic wind tunnel is to maintain laminar boundary layers on the nozzle walls and thereby reduce disturbance levels in the test flow. The conditions and apparent reasons for laminar boundary layers which have been observed during previous investigations on the walls of several nozzles for exit Mach numbers from 2 to 20 are reviewed. Based on these results, an analysis and an assessment of nozzle design requirements for laminar boundary layers including low Reynolds numbers, high acceleration, suction slots, wall temperature control, wall roughness, and area suction are presented
    corecore