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CALCULATION dF ?rlEAN AND FLUCTUATING PROPERTIES 

OF THE INCOMPRESSIBLE TURBUL.ENT BOUNDARY LAYE33 

By Ivan E. Beckwith and Dennis M. Bushnell 

NASA, Langley Research Center 

The conservation equations f o r  mass, mean momentum, and turbulent  k ine t i c  
energy f o r  t h e  incompressible turbulent boundary layer  have been solved by a 
finite difference procedure. 
f o r  the production, diss ipat ion,  and d i f fus ion  OF the turbulent k ine t i c  energy 
i n  the  flat-plate boundary l aye r  have been m o d i f i e d  aLd used t o  ca lcu la te  a non- 
equilibrium boundary layer  subjected i n i t i a l l y  t o  a large adverse pressure gra- 
dient  which i s  folloved by a run of constant pzessure. 

Mathematical models developed by Glushko (1965) 

Comparisons of both m e a n  and f luc tua t ing  flow propert ies  have indicated 

The best overa l l  agreement with data w a s  
generally good sgreement between the  calculated results and experimental 
measurements of Goldberg's (1966). 
obtained by reducing the scale of turbulence i n  the  outer  part of the boundary 
l aye r  t o  about. 70 percent of the flat-plate values as used by Glushko. 
culations have indicated tha t  further simple modifications t o  tk:t  turbulence 
scale function and t o  some of the mathematical m o d e l s  f o r  the txrbulence terms 
should improve the  accuracy of predictions f o r  the Goldberg data. 
expected that predictions of equal accuracy should be possible for other  arbi- 
trary pressure d is t r ibu t ions  and w a l l  boundary conditions. 

The cal- 

It i s  

INTRODUCTION 

The basic  d i f f icu l ty  i n  the calculat ion or ana lys i s  of aJ1 turbulent flows 
i s  the problem of how t o  relate the random f luc tua t ing  c h a m c t e r i s t i c s  of the 
flow t o  t h e  mean flow properties.  I n  the Reynolds equatiow of mean motion, f o r  
example, t h i s  problem has generally been m e t  by introdu*:i;q more or less arbi- 
t r a r y  assumptions f o r  the Reynolds stress terms (eqs. ( L4)- ,l7), Reynolds (1968)). 
I n  1943, Prandtl, Nevzgljadov, and Chou reported on indepeadent invest igat ions 
intended t o  develop a more rigorous approach t o  t h i s  procdttm. 
t ions  were based on t h e  idea of using independent dif9ere;llial equations t o  
describe the dynamics of the correlat ions fo r  the turbuient ve loc i ty  fluctua- 
t ions.  
the Navier-Sbkes equations of motion and contain terns f e r  double ve loc i ty  
correlat ions (Reynolds stress and turbulence k ine t i c  ene rg  terms), t r ip le  
veloci ty  correlations,  and correlat ions of veloci ty  urd pressure f luctuat ions.  

These investiga- 

These equatfons are derived (Hinze (1959) pp. 250-:':%, f o r  example) from 

Rotta (1-1) extended the work of Prandt l  ( l 95 ) ,  m d ,  i n  par t icu lar ,  Chou 

These methods were further devel- 
(1945), i n  considera3le d e t a i l  based on advances i n  theory m d  new data  not 
available during t h e  earlier invest igat ions.  
oped and applied t o  various types of simple flows by E$rmons (1954) 
(1961), Levin (lw), and Spalding (1967) 
energy equation was utiLlzed by McDonald (1966) t o  compuxe the mean prof i les  by 
an i n t e g r a l  method. ' 

Yownsend 
An i n t e g r a l  ?om of the turbulence 

Kovaszany (1967) and Nee (1967) assumed that the e f l ec t ive  t o t a l  v i scos i ty  
obeys a "rat+ 
Harlow (1961) # r e  a more formal der ivat ion (based on t h e  equation -Y ;r the 

+ation" expressing the "conservation" of the to*& vi?:osity. 
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turbulence k ine t i c  energy) of a rate equation fo r  the  eddy v iscos i ty  and a l so  
constructed a "transport" equation f o r  the sca le  of turbulence by analogy wi th  
Brownian motion. The same authors (Harlow (1968))  have since derived a new 
transport  equation f o r  t h e  d iss ipa t ion  function. Since t h i s  function depends on 
the scale of turbulence, the  new equation together wi th  t h e i r  previous rate 
equation f o r  t h e  eddy viscosi ty ,  were proposed as the  bas ic  equations f o r  a 
general method of computing turbulent  shear flows. 

I n  all o f t h e  invest igat ions mentioned above, except t h e  i n t e g r a l  method o f  
McDonald (1966), it was necessary t o  make assumptions regarding the  r e l a t i v e  
magnitudes of the  various f luc tua t ing  quant i t ies  i n  oz-der t o  sixcplif'y and obtain 
solutions t o  the nonlinear equations involved. Consequently, these methods were 
applied mostly t o  simple flows o r  portions of simple flows where some terms i n  
the correlat ion equations could be neglected. Hence, t h e  mathematical formula- 
t ions  of remaining terms representing the  f luc tua t ing  quant i t ies  could not be 
tested f o r  t h e i r  degree of general i ty .  
(1966), it  is  s t i l l  not possible  t o  test  the  detailed s p a t i a l  var ia t ions  o f  
these formulations and the  turbulent d i f fus ion  terms drop out completely upon 
in tegra t ion  across a shear I-ayer. 

I n  t h e  i n t e g r a l  method of McDonald 

The answer t o  these d i f f i c u l t i e s  is, of course, t o  obtain numerical solu- 
t i ons  of the  complete equations with automatic computing machines. Such solu- 
t i ons  have been given recent ly  by Glushko (l965), Bradshaw (ls'j'), arid gash 
(1968). I n  the  methods of Bradshaw (1967) and Nash (1968) the molecular shear 
is neglected and it w a s  therefore  necessary t o  provide t h e  correct  w a l l  boundary 
condition by incorporating the  " l a w  of t he  w a l l "  r e l a t ion  between ve loc i ty  and 
w a l l  shear. Glushko, on the  other  hand, kept all the  viscous terms and used 
formulations with t h e  cor rec t  l imi t ing  form a t  the  w a l l .  It might be expected 
t h a t  t h i s  lat ter approach would therefore  be somewhat more general than 
Bradshaw's i n  that sudden changes i n  wall-boundary conditions could be nego- 
tiated and extension t o  compressible flows where the "law of t h e  w a l l "  r e l a t i o n  
may not be generally applicable should give better results. 
t i o n  presented by Glushko, however, was f o r  t he  f lat  p la te ,  where again t h e  
degree of general i ty  of h i s  assumptions for  t h e  fl 'uctuating flow parameters 
could not be determined. 

The only computa- 

It is  the  primary purpose of the  present paper, then, t o  tes t  the  method c f  
Glushko i n  a nonequilibrium, adverse pressure 'gradient flow and t o  determine 
whether h i s  formulations of t he  turbulence quant i t ies  based primarily on flat- 
p l a t e  da ta  result i n  sa t i s fac tory  predictions f o r  t h e  mean propert ies  of  th i s  
more complex flow. Since the  ultimate success of these methods depends on t h e  
assumptions r e l a t ing  the  f luc tua t ing  properties,  comparisons of computed values 
of turbulent k ine t i c  energy with experimental da ta  w i l l  a l s o  be made. 

SYMBOLS 

constant i n  d iss ipa t ion  f'unction, equation ( 5 )  
turbulent k ine t i c  energy prof i le ,  e/Um 

mean value of turbulent - k ine t i c  energy, (1/2) (ut2 + v ' 2  + w t 2 )  
veloc i ty  prof i le ,  U / U ~  
flulction o f  r o r  K r  i n  t ransport  functions 
mean sca le  of turbulence 
exponent i n  de f in i t i on  of 
length Reynolds number, Uax v 

- 2  

instantaneous value of turbulent k i n e t i c  energy, (1/2) (ut* + v t 2  + w' *I - - -  

7, equation (m) 
I 



J P Z  r turbulent Reynolds number, - 
constant i n  t ransport  functions r 

V transformed n o x m ~ ~  veloci ty ,  equati on (e) 
U constant i n  t ransport  functions 

5 
K constant i n  t ransport  functions 
v 

V 

0 
h 

} transformed variables, equation (7) 

turbulence sca le  f b c t i o n ,  equation (1) and tabulations,  p. 6 

Subscripts 

ave mean o r  average value 
d d iss ipa t ion  
6 
e edge of boundary l aye r  
0 i n i t i d  condition 
T turbulent 
t t r ans i t i on  

nominal edge c f  boundary l aye r  

THEORY 

Assumptions f o r  Fluctuation Terms 
The bas ic  physics of t he  present method ( e s sen t i a l ly  t h e  same as t h a t  of 

Briefly,  t he  equa- Glushko (1965)) have been well stated by Reynolds (1968). 
t ions  of continuity, mean momentum, and turbulence energy are solved simultane- 
ously by a f i n i t e  difference procedure. 
quant i t ies  i n  the  turbulence energy equation (production, diffusion, and d i s s i -  
pation of t irbulence k i n e t i c  energy) as developed by Glushko (1965) were based 
on the  general approach of Rotta (1951) wherein the d iss ipa t ion  and diffusion 

terns are assumed t o  be functions of e, 2, and r = Gz - . The form of these 

functions depends prlmarily on physical and dimensional reasoning. The mean 
scale of turbulence 2 
correlat ion coef f ic ien ts  of t h e  longi tudinal  ve loc i ty  f luctuat ions,  and was 
taken as a "universal" function of the  form 

The expressions f o r  the f luc tua t ing  

Y 

was evaluated from flat-plate data  f o r  two point 

Glushko's expression f o r  t he  Reynolds scress u t i l i z e s  a modified form of 
Prandt l ' s  (1945) eddy v iscos i ty  r e l a t i o n  and uas assumed as, 

where 

r 0 c - r < 0.73 
0 

0.75 < r < 1.25 
0 

( 3 )  

r 
r 1.23 < - e 
0 
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The turbulence production term for the  problems considered herein i s  then 

The d iss ipa t ion  term was wri t ten as, 

‘d J 

where 
same function as given by equation ( 3 )  except that r i s  replaced by tcr. 

Zd = 2, taken as t h e  same function as in equation (l), and Ti( Kr) i s  the  

Glushko assumed t h a t  the t o t a l  difYksicn of turbulence energy was due t o  
the  gradient of F and specif ied the  corresponding d i f fus ion  coeff ic ient  t o  be 
the  Same quantity given i n  t h e  square brackets of equation ( 5 ) .  
obtained f o r  t he  d i f fus ion  terms 

Hence, he 

5 a - vt (g* e ) ] = & h  E +E(Kr)  a GJ 5 3 9  ( 6 )  

It is obvious t h a t  the genera l i ty  of these assumed expressions f o r  the  
production, diss ipat ion,  and d i f fus ion  of turbulent k ine t i c  energy can only be 
determined by comparison of final results w i t h  data. 

Computing Equations and Procedure 

The compating procedure is es sen t i a l ly  the same as t h a t  of Glushko (1963) 
The except that t h e  equations are transformed t o  s imi l a r i t y  type coordinates. 

main reason f o r  transforming t o  s imi l a r i t y  t y p e  coordinates i s  to provide scale 
fac to r s  that, i n  terms of t h e  transformed variables 5 and 7, reduce o r  remove 
the  rate of increase i n  boundary-layer thickness with dis tance 
zu;.face. 
t o  obtain desired accuracy i n  the f in i te  diffe-rence procedures can thereby be 
reduced and kept more nearly constant. 
s imi la r i ty ,  tile streamwise step s i z e  AS can be increased since,for t h i s  situa- 
CLon,the rate of  change of the dependent var iables  wi th  

E along the 
The number of computing steps, Aq, required across the  bounclary l aye r  

Also, i n  a region of approximate local 

i s  much reduced. 

The transformed var iab les  are defined as 

where n is ,  i n  general, a var iab le  function of 0 

( 7 4  

(PI 

and i s  determined from the  
requirement that  ~ q6 ( the  boundary-layer thickness i n  t he  transformed coordi- 
nates) i s  constant. 

The transformed normal ve loc i ty  is  defined as 

and t h e  final computing equations are then wri t ten a6 
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- '. *bulent k ine t i c  energy.- 

Continuity.- 

where 

The boundary conditions t o  be applied t o  the  above aystem of equation are: 

n A E T  q = o :  F = E = o , v = o , ~ ~  v = ( 2 5 )  
U 

W 

7 3 0 0 :  F + l . O ,  E +O, or E + E  e 

where Ee 

D, and n(x), is solved by a l i n e a r  impl ic i t  f i n i t e  difference procedure. 
procedure combines ce r t a in  aspects  of t h e  methods given i n  Glushko (1962) and 
Blottner (1964). 
specified functions of  x and p r o f i l e s  of V, F, and E must be specif ied a t  
the  i n i t i a l  s t a t i o n  Eo. For details of the procedure and results, the  reader 
is  referred t o  a forthcoming NASA publication by the  present authors. 

i s  one-half the square of t he  free-stream turbulence in t ens i ty .  

The system of equations ( 9 )  - (11) along with awciXary f'unctions f o r  M, 
This 

The external ve loc i ty  Uw ,and i t s  der ivat ive dUw/dx must be 

RESULT AND DISCUSSION 

The e f f e c t  of  some modifications t o  the method of Glushko (1965) on both 
mean and f luctuat ing flow propert ies  w i l l  be presentee f o r  f l a t - p l a t e  flow and 
f o r  one of the experimental flows of Goldberg (1966) with a l a rge  adverse 
pressure gradient.  The pr inc ipa l  modifications considered a r e  t o  t he  2/6 
f'unction (eq. (1)) and t o  the  d iss ipa t ion  and diffusion terns (eqs. ( 5 )  and 
(6) ) .  &so, as many of t h e  Stanford cases as possible w i l l  be run with the  
"standard" inputs of veloci ty  d i s t r ibu t ion  and i n i t i a l  inputs of Cf, H, 8 ,  and 
veloci ty  prof i les .  
of H, C f ,  and Ye. 

These results w i l l  be presented on t h e  standard output p lo t s  
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it should be noted t h a t  i n  a l l  cnlcidat ions by the  present method 
f r i c t i o n  has been cDmputed from t h e  car rec t  l imi t ing  form evaluated a t  
as, 

the  skin 
the  wall 

(13) 

The 
following thbulated values, where the  rp 
(1965) r e s u t .  

'9 functiorx used i n  the  present calculat ions were obtained from tr-e 
function i s  based on the  Glushko 33 

- Y2l6 

0 
.2 
.4 
-5  
.6 
.7 
.8 

> 1.4 - 

T.33 - 
0 

.20 
30 
33 
32 

9 30 
.26 
.01 

2/6 
T.23 

0 
.20 
.23 
25 
25 
25 

.20 

.01 

Y20 
0 

.20 

.20 

.20 

.20 

.20 

.20 

.01 

Linear interpolat ion between t h e  tabulated values was used i n  the  solutions.  
Prandt l ' s  mixing length  r e l a t ion  i s  thereby recovered i n  the  " l a w  of t h e  wall" 
region (say 
mately equal. 
(w i th  r >> 1) 

x2/6 < 0.2) where production and turbulent  d i ss ipa t ion  are approxi- 
That i s ,  by equating production and d iss ipa t ion  there  i s  obtained 

Then with 2 = y, a = 0.2, K = 0.4, C = 3.93 (Glushko (1965)) 

which corresponds t o  t h e  Prandtl  mixing length r e l a t i o n  for turbulent boundary 
layers .  

Flat-Plate  Flow 
h 

The calculat ion was s t a r t e d  a t  Rex = lo4 w i t h  input values 02 F and V 
from exact numerical solutions t o  the laminar Blasius flow. 
f o r  the  turbulent k ine t i c  energy was taken as (see Glushko (1965) ) 

The input p r o f i l e  

where E * and q*/qe are specified constants. 

'* - 0.4. results shown herein were computed with Eo* = 2.5 x 10 and - - n 

Unless otherwise noted, the  
-4 0 

Additional required inputs were; 

ue = 100 f t / sec  v = 1.58 x f t2/sec,  

' e  

= 4.95 9 
%,O 
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A?, = 0.05, 1 - F6 = 0.01 and E = 0.82 x 10-6. 
e, 0 

function was used i n  t h e  f lat-plate solution. The values of the 
i n  t h e  transport. functions M and D as used by Glushko vere 

a = 0.2, rc = O.l+, C = 3.93, ro = 110. These values and the cp.3'; function were 
adjusted by Glushko t o  give agreement w i t h  f l a b p l a t e  flow. 
repor t ,  t h i s  y.33 function a s  w e l l  a.s the  9.25 and q.20 functions as  ta.bu- 
lated on p .  6, w i l l  a l so  be applied t o  adverse pressure gra.dient flows. 

I n  /the present 

Mean flow quantit ies.-  The var ia t ion  of the form f ac to r  H wi th  R e x  i s  
shown i n  f igure 1. The value of H i s  a t  f i rs t  approximately constant a t  the 
i n i t i a l  value o f  2.392, corresponding t o  t h e  Blasius solut ion f o r  laminar  flc:., 
and then H abruptly decreases at  some value Df Re,. Increasing t h e  d i f fus '  3n 
term by a fac tor  of 3 over the o r ig ina l  Glushko form ( t h a t  i s ,  multiplying 
equation (6) by 3) increased t h e  value of x ( o r  
f i r s t  began t o  change from the laminar input shape, by 
(This value of t he  Reynolds number w i l l  be designated r;ex,t, and du.2 t o  the  
behavior of the  mean flow propert ies  can be considered ansLogous t o  a t r ans i t i on  
Reynolds number.) However, t h e  H curve appeared t o  approach the sane asymp- 
';otic value of approximately 1 .4  which is i n  agreement with the data  of 
Wieghardt (1951) considered typ ica l  of f l a t -p l a t e  flows. 

Rex)  w k x r e  .;;he mean profile:, 
f ac to r  of about l - l / 3 .  

The effects of t h i s  modification ( t o  t h e  diffusion term) on Cf as 
That i s ,  shown i n  f igure 2 are of t he  same nature as the  e f fec ts  on H. 

thz  " t ransi t ion" Reynolds number i s  increased by the same fac tor  when t h e  l a rge r  
diffusion term i s  used but  t he  f i n a l  asymptotic var ia t ion  of 
ment w i t h  t h a t  f o r  m l y  turbulent flow 6 s  obtained from Schl ic t ing (1960), 
p.  540, and the  data of Wieghardt (1951). 
when t h e  input disturbance l e v e l  Eo* was reduced t o  1 :< from 2 .z x 10-4, 
the  "transit ion" Reynolds number was f'mther increased t o  about 8 x 10 . 

Cf i s  i n  agree- 

It i s  a l so  o f  i n t e r e s t  t3 note tha t  

The computed values of the mean ve loc i ty  are plot ted i n  conventional 
prof i le  form i n  figure 3 and i t  i s  seen that the  prof i les  develop from the  
laminar input prof i le  a t  

6 Rex > 1  x 10 A t  t h i s  Reynolds number the p r o f i l e  shapes have apparently 
"setTl.ed out" t o  the  shape cha rac t e r i s t i c  of turbulent boundary l aye r s  as 
indicated by the  d a t a  of Wieghardt (1931). When the turbulent diffusion term i s  
increased by a f ac to r  of 3, the agreement with data i s  improved, par t icu lar ly  i n  
the outer par t  o f  t h e  boundary layer .  

The l'standard'l Wieghardt f l a t  -plate flow ( DENT 1400) was computed w i t h  the  
Glushko diffusion (eq. ( 6 ) )  increased by three,  two values of I$,*, and two z/6 
f'unctions. The 'p.25 f'unctiop appears t o  give somewhat bet ter  agreement with 
data than t h e  q.33 function, except f o r  t he  values of Cf a t  x > 3.0 meters. 

was retained as 
a constant. 
obtained by t h e  use of a value of 
computed. For example, for t h e  f l a t - p l a t e  problem discussed i n  t h i s  section, i f  
the value of a t  5 = 5 x lo4 was changed from 0.5 t o  0.8 the  number of A7 
steps required at 5 = 106 was reduce from 290 t o  125. Actually t h e  problem 
had t o  be r e in i t i a l i zed  a t  5 = 5 x loc t o  accommodate t h e  new value of i, but 
the  computer time from t h a t  point on was reduced by approximately one-half. 

( t o t a l  turbulent i n t ens i ty  divided by \r2) are Flotted against  

Rex = 1 x lo4 t o  turbulent type ZnQfiles f o r  

For a l l  t h e  ccllculations presented herein, the  value of 
It was found t h a t  appreciable savings i n  computer time could be 

6 appropriate t o  the  type of flow being 

Fluctuating flow q u a n t i t i e s . -  I n  f igu re  4 t h e  computed values of 
y/ /6~ = 0.995 

f o r  several  values of Rex and with the  same modification t o  t h e  diffusion 
tern as noted previously. The changes i n  prof i les  with Reynolds number 
duplicate those of  Glushko with some dependence on t h e  peak turbulent i n t ens i ty  
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&* at the  i n i t i d  s t a t i o n  (Eo = 4 x lo4). That. is, when Eo* is decreased, 
t h e  peak values of fl a t  subsequent s t a t ions  i n  t h e  
decreased, f igure  4(b), but t h e  p r o f i l e s  f o r  Re, > lo2 are o f  t he  same 
shape and magnitude regardless of the value of 
of t h e  p ro f i l e s  is qua l i t a t ive ly  i n  agreement wi th  e:rperimentaJ observa- 
t ions  i n  the  t r ans i t i on  region. 
diffusion term improved t h e  agreement with t h e  Klebaaoff (1B5) da ta  and 
decreased fl i n  mst of the  boundary l aye r  except near the outer  edge where 

was increased by f ac t c r s  of two o r  more. These l a t t e r  e f f e c t s  would be 
expected due t o  the  gradient type model (eq. ( 6 ) )  used t o  fonmrlate t h e  dif- 
fusion term. 
produced b e t t e r  agreement with data f o r  both t h e  fl and p r o f i l e s  o f  ./p; 
(not shown herein).  
those r e s u l t s  with t h e  turbulent d i f fus ion  term multiplied by three. It is 
emphasized t h a t  these simple modifications appeared t o  improve t h e  agreement 
between t h e  calculations and experimental data of the f luc tua t ing  and mean char- 
a c t e r i s t i c s  of the "fully" turbulent boundary l aye r  and also improved t h e  agree- 
ment with data of tl-? "transi t ion" Reynolds number Rex,t. 
minimum t r a n s i t i o n  Reynolds number observed i n  experiments 

appears possible t h a t  c r i t e r i a  f o r  se lec t ing  the  "best"mode1s for the turbulent 
terms may depend not o n l y  on t h e  r e s u l t s  f o r  developed turbulent f l o w  but also 
on the  locat ion and behavior of t h e  t r a n s i t i o n d  type flow. 

rans i t ion  region ere 

This colaputed behavior &*. 
The f a c t o r  of th ree  increase of t h e  turbulent 

The simple expedient of increasing t h i s  term by a f a c t o r  of th ree  

Consequently, t he  renaining discussion w i l l  be l imited t o  

That is, even the  
s s t i l l  somewhat 

larger than the  maximum value obtained here of about 8 x 10 f; . It therefore  

Nonequilibri um Boundary Layers 

The data from the  invest igat ion of Goldberg (1966) chosen as t h e  test case 
fo r  detai led discussion ( h i e  yressure d i s t r ibu t ion  number 3 )  should be a par- 
t i c u l a r l y  sex are test  of  t h e  pethod because the  boundary l aye r  was first driven 
nearly t o  separation by a l a rge  adverse pressure gradient and then allowed t o  
re lax  toward a flat-plate fl-ow by imposing a constant pressure. Also, hot-wire 
masurements o f  turbulent shear and longi tudinal  turbulence i n t e n s i t y  were 
avai lable .  

The d i s t r ibu t ion  o f  external  ve loc i ty  and i t s  der ivat ive wi th  respect t o  x 
Since there was as used t o  obtain t h e  present results a r e  shorn i n  figure 5.  

some uncertainty i n  reading t h e  small graphs published by Goldberg (1966) 

between them are within t h e  reading accuracy of Goldberg's or ig ina l  f igures  ar..- 
probably within the experimental e r ro r s  of  the or ig ina l  data.  The derivcttiver 
of the two ve loc i ty  curves, however, are considerably d i f fe ren t  a8 shown i n  
figure 5(b) where due/& as used i n  the calculations,  is plo t ted  against  x. 
These differences can become important, as w i l l  be shown, when the  boundary 
layer  approaches separation. Table I l ists  the values of D/Ue and E used 
a t  the  input s t a t ion  corresponding t o  x = 4 inches (presumably the distance 
from t h e  nose of the 10-inch-diameter test  cyl inder) .  Tne i n i t i a l  So f o r  t h i s  
s t a t ion  was computed by assuming f l a t - p l a t e  flow a t  Ue = 85 f t / s ec  with 
su f f i c i en t  Reynolds number t o  give the observed skin f r i c t i o n  of 0.00350. 
i n i t i a l  ve loc i ty  prof i le  was taken d i r e c t l y  from t h e  data p lo t  of Goldberg 
(1966) a t  x = 4 inches and the i n i t i a l  E p r o f i l e  was taken from t h e  measured 
longitudinal i n t ens i ty  a t  the  same s t a t i o n  as 

two 
a l t e r n a t e  veloci ty  d i s t r ibu t ions  are shown i n  figure 5(a)  and the  d i f fe r=-  y P P j  

The 

E =  
-2 - 2 u' + V I 2  + w '  

2u,' I p i  
\"m 1 measured 

since an examination of data where a l l  three components had been measured 
(Klebaroff (1955), fo r  example) showed that f h i s  r e l a t ion  wat approximately 
correct  fo r  0.1 < y/6 < 0,8. 
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Relcstion between skin f r ic t ior l  and fl pro f i l e s  .- The calculated vayia- 
t ion  i n  skin f r i c i i o n  i s  compared wiz the experimental data i n  f igure 6. The 
v e r t i c a l  arrows represent t h e  spread i n  the experimental skin f r i c t i o n  data 
obtained by four methods as discussed by Goldberg (1966). Theoretical results 
a r e  presen'kd f o r  both ve loc i ty  d is t r ibu t ions  of figure 3, three v a l u e s  of 
(diss ipat ion constant) ,  and the  three t / 6  h c t i o n s  . For veloci ty  d is t r ibu-  
t i o n  numbex 1, C = 3.93, and 
the region of the minimum Cf w 2 ere  t h e  present method overpredjcts Cf by as 
much as 100 percent. 
d j s t r ibu t ion  number 2 was used indicat ing the s e n s i t i v i t y  of t h e  results i n  t h i s  
region t o  the imposed veloci ty  d is t r ibu t ion .  

C 

9, 3 ,  the agreement with data i s  good except i u  

The agreement AS bet ter  when the alterKate ve loc i ty  

I n  order t o  determine the relative importance of the diss ipat ion tern; (eq. 
( 5 ) )  f o r  t h i s  ??articular type of flow, addi t ional  solutions with C = > and 6 
fo r  pressure d is t r ibu t ion  number 2 were obtained. A n  increase i n  C increases 
the diss ipat ion and reduces t h e  skin f r i c t i o n  by a n  almost constant amount over 
the en t i r e  t es t  region and gives improved agreement with data near the minimum 
Cf region a t  the expense of poorer agreement elsewhere. 
k ine t i c  energy equation can be paraphrased as 

Since t h e  turbulent 

(19) 
DZ - = Production + Mffusion - Dissipation D t  

it i s  evident that  an increase i n  d iss ipa t ion  shocld decrease z, and this , i r r  
turn,should decrease the  turbulent shear which from equation (2) i t  
approximately 

f o r  r > ro. Since the skin f r i c t i o n  depends d i r e c t l y  on the magnitude of Trn 

i s  somewhat surpr is ing t o  f i n d  the  almost l i n e a r  (inverse) r e l a t ion  betwcr the  
magnitudes of the d iss ipa t ion  and C f .  

i n  t he  w a l l  region, the noted decrease i n  Cf appears reasonable, e l t h e  it 

A physical "explanation" f o r  the improved agreement bet.dets the cjmpvted 
and experimental skin f r i c t i o n  i n  the minimum Cf 
values of C, i s  t o  be found i n  the behavior of the 
i n  figure 7. The theore t ica l  values i n  
diffusion term taken as three times Glushko d i f f w i o n  ( 3  x eq. (6 j ) ,  ve loc i ty  
d is t r ibu t ions  1 and 2, d i f f e ren t  values of C, and d i f f e ren t  Z / f i  functions. 
The f l rs t  thing t o  note i s  t h a t  a l l  these various modifications had on ly  minor 
e f f ec t s  on the magnitude and d i s t r ibu t ion  of E. An increase i n  C does 
reduce @, as it a o u l d  according t o  equations (19) and (20), but the best 
agreement wi th  t h e  data i s  generally obtained wi th  
of @ ( f ig .  7(a))  is similar t o  the flat-plate p ro f i l e s  of figure 5 .  
minimum Cf region i s  approached ( f i g .  7(b)) the  peak i a  both t h e  computed and 
measured fl prof i les  moves away from the  w a l l  and increases i n  magni%ude,and 
there i s  a corresponcling l a rge  increase i n  the  average turbulent k ine t i c  energy 
(B)ave across the e n t i r e  boundary layer .  That  t h i s  increase i n  (Z)ave can 
be associated with a decrease i n  a d iss ipa t ion  length scale Id r.an be seen by 
noting that f o r  la rge  

reg!on, as caused by l a rge r  
p ro f i l e s  which are shown 

i s  figure were coaruted with the 

C = 3.93. The input p ro f i l e  
As t h e  

r, the d iss ipa t ion  (eq. ( 3 ) )  i s  approximately 

312 c'1 e = K u  (z) , 2  
'd 

where Id is defined here as a microscale of t h e  turbuience. Then i f  C is 
regarded as a "universal" constant, the l a rge r  values of C as used f o r  the 
solutions of figure 6 should be comidered as equivalent t o  correspcnding 
decreases i n  the square of the  diss ipat ion scale, Z d 2 .  I f  2 i s  conb..dered 
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an in t eg ra l  scale,  the 
(Hinze (1939), P-  185) 

r e l a t ion  between 2 and 
may be writ.t A as 

1 

2d for i so t rop ic  turbulence 

(22) 

and th i s  rzlatioxi i s  seen ts be i n  agreement with the results of figure 6 as 
related to  the change with x i n  fi p r o f i l e s  of 2igure 7, s ince es (F)ave 
increases, td should decrease which, according t o  the  above reasoning, accounts 
f o r  an increase i n  diss ipat ion,  a reducticn i n  E, and finally, t h e  reduction 
i n  Cy, as computed. It can then be expected tha t  a functional r e l a t i o n  f x  td 
of the  type  given by equation (22)  would .msult i n  good agreement over the 
e n t i r e  test length f o r  t h i s  case. 
assumption that the in t eg ra l  scale 2 is not affected by (E)ave- 

The above explanation depends on the  

Ecundary-layer thickness param eters and mean ve loc i ty  profiles.- The 
computed values o f  
Goldberg (1966). The differences i n  the  values of 8 between t h e  theoretical 
calculations and the experimental data are small, but, as is w e l l  known, these 
s m d l  d i f f e r e n e s  can lead t o  l a r g e  effects on Cp. I n  general, the ve loc i ty  
d is t r ibu t ion  nunber 1 gives better agreement vithAthe data but  it i s  obdous  
that a comparison of c' 
method when Cf -+ 0. 

8 are compared i n  figure 8 w i t h  the experimental data of 

alone i s  not sufficient t3 judge the accuracy of a 

The shape parameter Fi i s  a more sensitive indica tor  of t h e  accuracy of a 
method as shown by f igure  9 where t t e  e f f e c t s  of t h e  two ve loc i ty  d is t r ibu t ions ,  
the values of C, and the  2/6 functions are shown. The ve loc i ty  d i s t r ibu t ion  
number 2 and the  l a rges t  value of C 
mental data for 2/6 = 9-53 .  However, the use of the other two 2/6 functions 
gives the  best overa l l  agreement with the data, and bracket t h e  data i n  the  
v i c in i ty  of the peak H. The reason for the  better agreement of H with data 
f o r  2/6 = q.20 and 9.25 i s  apparent from c m m s o n s  of computed ve loc i ty  
profile,s (not  shown herein) with the data. I n  t h e  v i c i n i t y  of t h e  miniaUm Cf 
the  agreement between the  computed and experimental ve loc i ty  profiles was poor 
for  216 = regardless of the ve loc i ty  d i s t r ibu t ion  or the value of C, 
However, when 'pO2o and v.25 vere used, the theo re t i ca l  results bracketed 
the  data. 

give the best agreemnt  wi th  the experi- 

Discussion of turbulence sca le  f'unctions.- It has already been noted From 
figure 7 that fl is r e l a t i v e l y  inscFaftive to changes i n  f'ree-stream veloc i ty  
dis t r ibut ion,  C, and the 2/6 function. The computed mean ve loc i ty  profiles 
were insens i t ive  t o  ve loc i ty  d i s t r ibu t ion  and C, b u t  could be af fec ted  con- 
siderably by a change i n  
d iss ipa t ion  are the  dominant terns i n  the equations, it is  appsrent from the 
above discussion and from the form of these terms (see eqs. (2) - (3)) that the 
only way t o  effect the  mean ve loc i ty  prof i les ,  and hence the  H values t o  any 
appreciable extent i s  t o  modify the turbulence sca le  function 
prwious  section, a change i n  C was related to  a change i n  a diss ipa t ion  
microscale Id, but  f r o m  equation (16), a change i n  c corresponds &so t o  a 
change i n  Prandt l ' s  mixing length cms tan t .  
t i o n  is known t o  apply even i n  an -erse pressure gradient i n  t h e  law of the  
w a l l  region, the  2/6 r'wAction wat not changed f o r  y /6  < 0.2. The Goldberg 
(1965) experimental values of mixing lengt'? ' _ _  tc . ha t  2/6 should be 
decreased i n  t h e  region c f  ;r/6 > 0.9. r '  decrease would reduce t h e  
turbulent shear and thereby resuit i. 1.1 - *  a ment with the  experimental 
veloci ty  prof i les ,  the 2/6 f u c t i o n .  sed i n  the  manner shown by t h e  
tabulations on p. 6. The eddy v iscos i ty  function E/V does not depend on free- 
stream veloci ty  d i s t r i 'w t ion  a r  

2/6. Since the turbulent shear, production, and 

2/6. I n  t h e  

Since Prandt l ' s  mixing lengt,h rela- 

C (since fl was independent of these parame- 



ters) but is direct ly  dependent on 2/6 
1/6 = 9.20' This direct dependence of ~ / p  on 2/6 is, of course, the reason 
for  the marked effect of the 2/6 function on both Cf ( f ig .  6 )  and G/V=. 
The success of these modifications t o  
ments t o  these functions should give any desired degree of agreement wi th  
experimental data. I n  particular,  t he  trends i n  (fig.  7) for  t h i s  problm- 
indicate the magnitude of the change i n  
level of (F)ave. 
t i a l  equation for the mean scale of turbulence. 
Rotta's hypothesis (1951, Part  11) and relates the  scale of turbulence t o  
('lave and TT. It is possible that the use of a similar relation may improve 
the predictiocs of this present method. 

and agrees bet ter  w i t h  t h e  data for  

2/b indicates that  further minor sdjust- 

2/6 should probably depend on the 

This equation was based on 
Spalding (1%7a) has a p p l i d  t o  free shear flows a differen- 

Other adverse pressure gradient cases.- Additional adverse pressure gra- 
dient cases have been computed w i t h  the "standard" velocity distributions as 
supplied for  t h e  Stanford cases and for  varlms values of C. The Z/6 func- 
t ion used fo r  these additional cases was generally the 
lated on p. 6. 
experienced in obtaining these solutions since input d u e s  of E w e r e  Rot 
available, except for  Bradshaw's (IDm 2400). When input E values were not  
available, a trial and error reini&alizing procedure t o  obtain input E was 
used. 
(IDEWT 1200) but i n  other cases such as Moses (IDm 3800), the final results 
appeared to 'De quite sensit ive t o  input 

rp 25 function as tabu- 
mceptions are noted on the figures. Smk Z i f f i c d t y  vas 

This procedure was sat isfactory i n  sane cases such as Ludvig Tillman 

E prof i les  as well as input prof i les  
of Y. 

The equations for the incampressible, turbulent boundary layer with 
constant f l u i d  properties have been Solved by a numerical procedure i n  simi- 
l a r i t y  type cocrdinates. Comparisons of calculated values for  both mean and 
fluctuating f low properties with experimental measurements i n  nonequilibrium 
boundary layers as w e l l  as the flat-plate boundary layer have indicated 
generally good agreement. 

For the  flat-plate calculation, the laminar Rlasius velocity prof i le  and 
arbttrary small "disturbance type" prof i les  fo r  the turbuient kinet ic  energy 
vere used as i n i t i a l  conditions at a Reynolds number of IO4. 
proceeded, l i t t l e  change i n  the mean profiles of velocity and turbulent kinetic 
energy were mted  u n t i l  at same downstrean, station, depending on the level  of 
the input disturbance and modiflcations t o  the turbulence terms, rather abrupt 
changes began and the  subsequent m e a n  velocity prof i les  were qualitatively 
similar to those observed experimentally i n  the t ransi t ion region between 
laminar and fully turbulent flow. The Reynolds number at which these changes i n  
the mean profi1.e~ were first obtained i n  t h e  calculation can therefore be termed 
a "trarsit ion" Reynolds number and i ts  dependence on the leve l  of the input 
turbulent kinet ic  energy was shown by GlUShkOj it i s  shown herein that modifi- 
cations t o  the models of the turbulent terns also affected t h i s  "transition" 
Reynolds nuniber. 

As the calculation 

It was found that when the  turbulen% diffusion term of Glushko's was 
increased by a factor of 3, the agreement with experimental values of mean 
velocity and the  r a t i o  of turbulent shear to turbulent energy was improved i n  
the outer portion of the f u l l y  turbulent boundary layer fo r  both the flat-plate 
and nonequillbrim flows. It was also found that when the dissipation term was 
changed for the nonequilibrium flo- , the  skin fYiction was reduced by almost 
constant increments that depended direct ly  on reductions i n  the square of the 
dissipation scale. Analysis of these results indicated that t h e  micro- 
(dissipation) scale may be related t o  the integra3 scale of' turbulence in about 



t h e  same w a y  8s for  isotropic turbulence. The best overall  agreement with 
measured values of skin f r i c t ion ,  form factor, me811 velocity profiles, and 
fluctuating properties was obtain& by reducing the value of the turbulence 
scale From a peak of 0.33 to 0.20 or 0.25 of the  boundary-layer thickness i n  
t h e  outer p a r t  of the boundary layer. The l inear  re la t ion of turbulence scale 
with distance from t h e  wall, i n  accordance with Prandtl 's  mixing length theory 
and as wed by Glushlro, was retained i n  t h e  " l a w  of the w a l l  region." It is 
concluded that simple modifications to the  turbulence scale f'unction and to the  
turbulent f luctuation terms as modeled by Glushbo result in accurate predic- 
t ions of mean and fluctuating characterist ics of turbulent and t ransi t ional  
boundary layers w i t h  arbi t rary boundary conditions. 

Values based on data of Goldberg (1966) 
= 8 x lo5 , v = 1.8 x 10 -4 pt 2 /set , p = 0.07f? Ib/ft3 , 
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