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CALCULATION OF MEAN AND FLUCTUATING PROPERTIES
OF THE INCOMPRESSIBLE TURBULENT BOUNDARY LAYEK
By Ivan E. Beckwith and Dennis M. Bushnell

NASA, Langley Research Center

SUMMARY

The conservation equations for mass, mean momentum, and turbulent kinetic
energy for the incompressible turbulent boundary layer have been solved by a
finite difference procedure. Mathematical models developed by Glushko (1965)
for the production, dissipation, and diffusion of the turbulent kinetic energy
in the flat-plate boundary layer have been modified ard used to calculate a non-
equilibrium boundary layer subjected initially to a large adverse pressure gra-
dient which is followed by a run of constant pressure.

Comparisons of both mean and fluctuating fiow properties have indicated
generally good agreement between the calculated results and experimental
measurements of Goldberg's (1966). The best overall agreement with data was
obtained by reducing the scale of turbulence in the outer part of the boundary
layer to about TO percent of the flat-plate values as used by Glushko. The cal-
culations have indicated that further simple modifications to tka turbulence
scale function and to some of the mathematical models for the turbulence terms
should improve the accuracy of predictions for the Goldberg data. It is
expected that predictions of equal accuracy should be possible for other arbi-
trary pressure distributions and wall boundary conditions.

INTRODUCTION

The basic difficulty in the calculation or analysis of all turbulent flows
is the problem of how to relate the random fluctuating charncteristics of the
flow to the mean flow properties. In the Reynolds equation: of mean motion, for
example, this problem has generally been met by introdu-~i:y. more or less arbi-
trary assumptions for the Reynolds stress terms (egs. (14)- 17), Reynolds (1968)).
In 1945, Prandtl, Nevzgljadov, and Chou reported on indenmeadent investigations
intended to develop a more rigorous approach to this proolem. These investiga-
tions were based on the idea of using independent differential equations to
describe the dynamics of the correlations for the turbulent velocity fluctua-
tions. These equations are derived (Hinze (1959) pp. 250-£50, for example) from
the Navier-Stckes equations of motion and contain terms for double velocity
correlations (Reynolds stress and turbulence kinetic energy terms), triple
velocity coirelations, and correlations of velocity uand pressure fluctuations.

Rotta (1951) extended the work of Prandtl (19%45), and, in particular, Chou
(1945), in considerable detail based on advances in theory and new data not
available during the earlier investigations. These methods were further devel-
oped and applied to various types of simple flows by Emmons (1954), “ownsend
(1961), Levin (1964), and Spalding (1967). An integral ‘orm of the turbulence
energy equation was utilized by McDonald (1966) to compuwe the mean profiles by
an integral method.

Kovaszany (1967) and Nee (1967) assumed that the efiective total viscosity

obeys & "rate Justion" expressing the "conservation" of the total virzosity.
Harlow (1967) _ave a more formal derivation (based on the ecquation 7 .r the
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turbulence kinetic energy) of a rate equation for the eddy viscosity and also
constructed a "transport" equation for the scale of turbulence by analogy with
Brownian motion. The same authors (Harlow (1968)) have since derived a new
transport equation for the dissipation function. Since this function depends on
the scale of turbulence, the new equation together with their previous rate
equation for the eddy viscosity, were proposed as the basic equations for a
general method of computing turbulent shear flows.

In all of the investigations mentioned above, except the integral method of
McDonald (1966), it was necessary to make assumptions regarding the relative
magnitudes of the various fluctuating quantities in order to simplify and obtain
solutions to the nonlinear equations involved. Consequently, these methods were
applied mostly to simple flows or portions of simple flows where some terms in
the correlation equations could be neglected. Hence, the mathematical formula-
tions of remaining terms representing the fluctuating quantities could not be
tested for their degree of generality. In the integral method of McDonald
(1966), it is still not possible to test the detailed spatial variations of
these formulations and the turbulent diffusion terms drop out completely upon
integration across a shear layer.

The answer to these difficulties is, of course, to obtain numerical solu-
tions of the complete equations with automatic computing machines. Such solu-
tions have been given recently by Glushko (1965), Bradshaw (1967), and NMash
(1968). 1In the methods of Bradshaw (1967) and Nash (1968) the molecular shear
is neglected and it was therefore necessary to provide the correct wall boundary
condition by incorporating the "law of the wall" relation between velocity and
wall shear. Glushko, on the other hand, kept all the viscous terms and used
formulations with the correct limiting form at the wall. It might be expected
that this latter approach would therefore be somewhat more general than
Bradshaw's in that sudden changes in wall-boundary conditions could be nego-
tiated and extension to compressible flows where the "law of the wall" relation
may not be generally applicable should give better results. The only computa-
tion presented by Glushko, however, was for the flat plate, where again the
degree of generality of his assumptions for the fluctuating flow parameters
could not be determined.

It is the primary purpose of the present paper, then, to test the method cf
Glushko in a nonequilibrium, adverse pressure gradient flow and to determine
whether his formulations of the turbulence quantities based primarily on flat-
plate data result in satisfactory predictions for the mean properties of this
more complex flow. Since the ultimate success of these methods depends on the
assumptions relating the fluctuating properties, comparisons of computed values
of turbulent kinetic energy with experimental data will also be made.

SYMBOLS

constant in dissipation function, equation (5)

turbulent kinetic energy profile, E/sz
instantaneous value of turbulent kinetic energy, (1/2) (u‘2 + v'2 + w'2)

mean value of turbulent kinetic energy, (1/2) (u'2 +v'e ¢+ y'2
velocity profile, ﬁVU&
function of r or kr in transport functions
mean scale of turbulence
exponent in definition of 1, equation (7b)
e length Reynolds number, U&x/v

OBl gl 0 B OQ



turbulent Reynolds number, [E;l

H

constant in transport functions

)
()

transformed normal velocity, equation (&)
constant in transport functions

transformed variables, equation {7)

constant in transport functions
turbulence scale function, equation (1) and tabulations, p. 6

G I ve 3 Q <
(v

Subscripts

ave mean or average value
dissipation

nominal edge cf boundary layer
edge of boundary layer

initiel condition

turbulent

transition

O O O

THEORY

Assumptions for Fluctuation Terms

The basic physics of the present method (essentially the same as that of
Glushko (1965)) have been well stated by Reynolds (1968). Briefly, the equa-
tions of continuity, mean momentum, and turbulence energy are solved simultane-
ously by a finite difference procedure. The expressions for the fluctuating
quantities in the turbulence energy equation (production, diffusion, and dissi-
pation of turbulence kinetic energy) as developed by Glushko (1965) were based
on the general approach of Rotta (1951) wherein the dissipation and diffusion

terms are assumed to be functions of e, I, and r = J: L . The form of these

functions depends primarily on physical and dimensional reasoning. The mean
scale of turbulence 1 was evaluated from flat-plate data for two point
correlation coefficients of the longitudinal velocity fluctuations, and was
taken as a "universal" function of the form

5= 9(F) =055 W

Glushko's expression for the Reynolds scress utilizes a modified form of
Prandtl's (1945) eddy viscosity relation and was assumed as,

Tp=-P u'v' = u Hr) ar gg (2)

where

v
P
W
S

T 2 r
- (-1;— - 0.75) 0.75 < ;; <1.25

r
1.25<r—'<°° J

o)
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The turbulence production term for the problems considered herein is then

— =\ 2
Production = T gg =a p H(r) Jirz(gg) (4)

The dissipation term was written as,

u,' du.'
i

€=V Sii- = vC [} + H(kr) a né] —E§ (5)
J J 3
where 1. = 1, taken as the same function as in equation (1), and H(kr) is the

same function as given by equation (3) except that r is replaced by «r.

Glushko assumed that the total diffusicr of turbulence energy was due to
the gradient of € and specified the corresponding diffusion coefficient to be
the same quantity given in the square brackets of equation (5). Hence, he
obtained for the diffusion terms

5__[5_..\, -5-—+e F{D-&-H(Kr)anﬂy} (6)

It is obvious that the generality of these assumed expressions for the
production, dissipation, and diffusion of turbulent kinetic energy can only be
determined by comparison of final results with data.

Computing Equations and Procedure

The computing procedure is essentially the same as that of Glushko (1965)
except that the equations are transformed to similarity type coordinates. The
main reason for transforming to similarity type coordinates is to provide scale
factors that, in terms of the transformed variables & and 17, reduce or remove
the rate of increase in boundary-layer thickness with distance £ along the
suirface. The number of computing steps, An, required across the boundary layer
to obtain desired accuracy in the finite difference procedures can thereby be
reduced and kept more nearly constant. Also, in a region of approximate local
similarity, the streamwise step size AE can be increased since, for this situa-
1.lon, the rate of change of the dependent variables with £ 1is much reduced.

The transformed variables are defined as

X U
o) = [ 5 e (Te)
Uoo
(x,y) = ——y ()
v(ag)n

where n 1is, in general, a variable function of ¢ and is determined from the
requirement that N5 (the boundary-layer thickness in the transformed coordi-
nates) is constant.

The transformed normal velocity 1s defined as

A 2n =
V- _—_—(251)100 v pSY 4 (26)"

é:|<ﬂ

(8)

and the final computing equations are then written as



Momentum.-

2n du
OF , 2 oF (2¢) o 3 OF
(2¢)° F5-+v3— Ta'g‘(l‘rz)‘“ﬁ(MFq) (9)
. “bulent kinetic energy.-
25 JE . o dE  2(26)% Wy OV
(25) FB—E+VSﬁ_- Uw It FE+(M-1) H)
L3 o 3E) _ o (26)%" b (10)
on ( on) 2 2
Ry @
Continuity.-
2n aF av n , dn .
(2¢) (2§) (§ + g o 2;) =0 (11)
where
if e
F=r,E=—5 (12)
U’ U
M=1+ar Hr) =1+alr)o Ji:"R5
D=1+a«kr Hkr) = 1 + ax H(xr) ¢ JE Ry (13)
Us
Ry = %

n=0: F=E=0,V=0,0r V= (28)°

8(:' <l

M- ¥F-»1.0, E->0, or E —;Ee (1k)

where Ee is one-half the square of the free-stresam turbulence intensity.

The system of equations (9) - (11) along with auxiiiary functions for M,
D, and n(x), is solved by a linear implicit finite difference procedure. This
procedure combines certain aspects of the methods given in Glushko (1965) and
Blottner (1964). The external velocity U_ ,.and its derivative dU_/dx must be
specified functions of x and profiles of V, F, and E must be specified at
the initial station €,. For details of the procedure and results, the reader
is referred to a forthcoming NASA publication by the present authors.

RESULT AND DISCUSSION

The effect of some modifications to the method of Glushko (1965) on both
mean and fluctuating flow properties will be presented for flat-plate flow and
for one of the experimental flows of Goldberg (1966) with a large adverse
pressure gradient. The principal modifications considered are to the 2/8
function (eg. (1)) and to the dissipation and diffusion terms (eqs. (5) and
(6)). Also, as many of the Stanford cases as possible will be run with the
"standard" inputs of velocity distribution and initial inputs of C¢, H, 6, and
velocity profiles. These results will be presented on the standard output plots
of H, Cs, and Ry.
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it should be noted that in all criculations by the present method the skin
friction has been computed from the correct limiting form evaluated at the wall
as, -
[ dU\
T =W (15)
w "9y,
The 9 functions used in the present calculations were obtained from tre

following tabulated values, where the @ 33 function is based on the Glushko
(1965) result. :

1/8

R ?x» P2 P

o 0 0 0
.2 .20 .20 .20
A .30 .25 .20
) .33 .25 .20
.6 .32 .25 .20
o .30 .25 .20
.8 .26 .20 .20
> 1.4 .01 .01 .01

Linear interpolation between the tabulated values was used in the solutions.
Prandtl's mixing length relation is thereby recovered in the "law of the wall"
region (say x,[/8 < 0.2) where production and turbulent dissipation are approxi-
mately equal. That is, by equating production and dissipation there is obtained
(with r >> 1)

Trq =\2

Tra 2 (SH) (16)
P JxC y

Then with 1 =y, a = 0.2, k = 0.4, C = 3.93 (Glushko (1965))

T o (30
2 (0.4y) (5?)

which corresponds to the Prandtl mixing length relation for turbulent boundary
layers.

Flat-Plate Flow

The calculation was started at Re, = 104 with input values of F and V
from exact numerical solutions to the laminar Blasius flow. The input profile
for the turbulent kinetic energy was taken as (see Glushko (1965))

E(&, 1) = E* (%)2 exp” {% [1 ) (%;)2]} (17)

where EO* and n*/ne are specified constants. Unless otherwise noted, the

- *
results shown herein were computed with Eo* = 2.5 x 10 b and r. 0.h.

Additional required inputs were; ©

U, = 100 ft/sec , v = 1.58 x 10‘)+ fte/sec,
-4 [JF -k
Te,o = h,o5 , 1-F, =1x10", §ﬁ>e = 3.4 x 10



A, = ©.05, 1-Fy=0.01 and E_ = 0.82 x 10-6.
The o function was used in the flat-plate solution. The values of the
constaﬁ%s in the transport functions M and D as used by Glushko were
a = 0.2, v = 0.1 = 3.935, r, = 110. These values and the o .33 function were
adjusted by Glushko to give agreement with flat-plate flow. In the present
report, this 3% function as well as the ¢.,25 and ¢,pg functions as tabu-
lated on p. o, w111 also be applied to adverse pressure gradient flows.

Mean flow quantities.- The variation of the form factor H with Reyx is
shown in figure 1. The value of H 1s at first approximately constant at the
initial value of 2.592, corresponding to the Blasius solution for laminar flc-,
and then H abruptly decreases at some value of Rey. Increasing the diffus »n
term by a factor of 3 over the original Glushko form (that is, multiplying
equation (6 by 3) increased the value of x (or Rex) whore +he mean profilec
first began to change from the laminar input shape, by = factor of about 1-1/3.
(This value of the Reynolds number will be designated rex,t, and duz to the
behavior of the mean flow properties can be concidered analogous to a transition
Reynolds number.) However, the H curve appeared to approach the same asymp-
sotie value of approximately 1.4 which is in agreement with the data of
Wieghardt (1951) considered typical of flat-plate flows.

The effects of this modification (to the diffusion term) on Ce¢ as
shown in figure 2 are of the same nature as the effects on H. That is,
the "transition" Reynolds number is increased by the same factor when the larger
diffusion term is used but the final asymptotic variation of Csy 1is in agree-
ment with that for fully turbulent flow &s obtained from Schlicting (1960),
p. 540, and the data of Wieghardt (1951). It is also of interest to note that
when the input disturbance level E_* was reduced to 1 x 10'8 from 2.5 X lO‘u,
the "transition" Reynolds number was further increased to about 8 x 10

The computed values of the mean velocity are plotted in conventional
profile form in figure 3 and it is seen that the profiles develop from the
laminar input profile at Rey = 1 X 104  to turbulent type rrofiles for

Rex > 1 x 107, At this Reynolds number the profile shapes have apparently
"settled out" to the shape characteristic of turbulent boundary layers as
indicated by the data of Wieghardt (1951). When the turbulent diffusion term is
increased by a factor of 3, the agreement with date is improved, particularly in
the outer part of the boundary layer.

The "standard" Wieghardt flat-plate flow (IDENT 1L400) was computed with the
Glushko diffusion (eq. (6)) increased by three, two values of Eg*, and two 1/®
functions. The @,p5 function appears to give somewhat better agreement with
data than the @, 633 function, except for the values of Cr at x > 3.0 meters.

For all the calculations presented herein, the value of n was retained as
a constant. It was found that sppreciable savings in computer time could be

obtained by the use of a value of n appropriate to the type of flow being
computed. For example, for the flat-plate problem discussed in this section, if
the value of n at & =5 x 104 was changed from 0.5 to 0.8 the number of An
steps required at ¢ = 106 was reduced from 290 to 125. Actually the problem
had to be reinitialized at € =5 x 10 to accommodate tihe new value of ﬁ, but
the computer time from that point on was reduced by approximately one-half.

Fluctuating flow quantities.- In figure L4 the computed values of JE;
(total turbulent intensity divided by V2) are plotted against y/8p = 0.995
for several values of Rex and with the same modification to the diffusion
term as noted previously. The changes in \[ir profiles with Reynolds number
duplicate those of Glushko with some dependence on the peak turbulent intensity
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Eo* at the initial station (go =L x 10“). That is, when Eo* 1s decreased,
the peak values of \E at subsequent stations in the gransition region are
decreased, figure 4(b), but the profiles for Reyx > 10° are of the same

shape and magnitude regardless of the value of .Eg*. This couputed behavior

of the VE profiles is qualitatively in agreement with evperimental observa-
tions in the transition region. The factor of three increase of the turbulent
diffusion term improved the agreement with the Klebanoff (1955) data and
decreased JTT in most of the boundary layer except near the outer edge where
VE was increased by facters of two or more. These latter effects would be
expected due to the gradient type model (eq. (6)) used to formulate the dif-
fusion term. The simple expedient of increasing this term by a factor of three
produced better agreement with data for both the E and profiles of +1/pe

(not shown herein). Consequently, the remaining discussion will be limited to
those results with the turbulent diffusion term multiplied by three. It is
emphasized that these simple modifications appeared to improve the agreement
between the calculations and experimental data of the fluctuating and mean char-
acteristics of the "fully" turbulent boundary layer and also improved the agree-
ment with data of t} 2 "transition" Reynolds number Rex,t. That is, even the
minimum transition Reynolds number observed in experiments is still somewhat
larger than the maximum value obtained here of about 3 x 10*. It therefore
appears possible that criteria for selecting the "best" models for the turbulent
terms may depend not only on the results for developed turbulent flow but also
on the location and behavior of the transitional type flow.

Nonequilibrium Bounliary Layers

The data from the investigation of Goldberg (1966) chosen as the test case
for detailed discussion (his vwressure distribution number 3) should be a par-
ticularly sev~re test of the method because the boundary layer was first driven
nearly to separation by a large adverse pressure gradient and then allowed to
relax toward a flat-plate flow by imposing a constant pressure. Also, hot-wire
znzasurements of turbulent shear and longitudinal turbulence intensity were
available,

The distribution of external velocity and its derivative with respect to x
as used to obtain the present results are shown in figure 5. Since there vas
some uncertainty in reading the small graphs published by Goldberg (1966), two
alternate velocity distributions are shown in figure 5(a) and the differences
between them are within the reading accuracy of Goldberg's original figures ar”
probably within the experimental errors of the original data. The derivative:
of the two velocity curves, however, are considerably different as shown 1n
figure 5(b) where dUg[dx as used in the calculations, is plotted against x.
These differences can become important, as will be shown, when the boundary
layer approaches separation. Table I lists the values of 'I._I/Ue and E used
at the input station corresponding to x = 4 inches (presumebly the distance
from the nose of the 10-inch-diameter test cylinder). Tne initial &, for this
station was computed by assuming flat-plate flow at Ue = 85 ft/sec with
sufficient Reynolds number to give the observed skin friction of 0.00350. The
initial velocity profile was taken directly from the data plot of Goldberg
(1966) at x = 4 inches and the initial E profile was taken from the measured
longitudinal intensity at the same station as

E= 5 2| —s (18)
2U U,

[}

measured

since an examination of data where all three components had been measured
(KLebaroff (1955), for example) showed that *his relation wa. approximat~ly
correct for 0.1 < y/5 < 0.8.



9

Relation between skin friction and Jﬁ'#profiles.- The calculated varia-
tion in skin friction is compared with the experimental data in figure 6. The
vertical arrows represent the spread in the experimental skin friction data
obtained by four methods as discussed by Goldberg (1966). Theoretical results
are presented for both velocity distributions of figure 5, three values of C
(dissipation constant), and the three i/® functions. For velocity distribu-
tion number 1, C = 3.95, and O 3y the agreement with data is good excert in
the region of the minimum Csp where the present method overpredicts Cy Dby as
much as 100 percent. The agreement .s better when the alterrnate velocity
distribution number 2 was used indicating the sensitivity of the results in this
region to the imposed velocity distribution.

In order to determine the relative importance of the dissipation term (eq.
(5)) for this particular type of flow, additional solutions with C =% and 6
for pressure distribution number 2 were obtained. An increase in C 1increases
the dissipation and reduces the skin friction by an almost constant amount over
the entire test region and gives improved agreement with data near the minimum
Cr region at the expense of poorer agreement elsewhere. Since the turbulent
kinetic energy equation can be paraphrased as
% = Production + biffusion - Dissipation (19)

it is evident that an increase in dissivation should decrease e, and this, in
turn, should decrease the turbulent shear which from equation (2) 1
approximately

N = .U
TR ¥ ap Ve 15y (20)
for r > ro. ©Since the skin friction depends directly on the magnitude of Tm
in the wall region, the noted decrease in Cfy appears reasonable, althc it

is somewhat surprising to find the almost linear (inverse) relation betwc> the
magnitudes of the dissipation and C¢.

A physical "explanation" for the improved agreement beiwee: che computed
and experimental skin friction in the minimum Cs region, as caused by larger
values of C, 1s to be found in the behavior of the e profiles which are shown
in figure 7. The theoretical values in is figure were computed with the
diffusion term taken as three times Glushko diffurion (3 x eq. (6)), velocity
distributions 1 and 2, different values of C, and different l/ﬁ functions.
The first thing to note is that all these various modifications had only minor
effects on the magnitude and distribution of VE. An increase in C does
reduce |E, as it s.aould according toc equations(19) and (20), but the best
agreement with the cdata is generally obtained with C = 3.95. The input profile
of |E (fig. 7(a)) is similar to the flat-plate profiles of figure 5. As the
minimum Cs region is approached (fig. 7(b)) the peak ia bcth the computed and
measured JE profiles moves away from the wall and increases in magnitude,and
there is a corresponuing large increase in the average turbulent kinetic energy
(€)aye across the entire boundary layer. That this increase in (€)gye can
be assoclated with a decrease in a dissipatlon length scale 13 can be seen by
noting that for large r, the dissipation (eq. (%)) is approximately

¢ = o (3)3/2 =L (21)

Y

where 13 1is defined here as a microscale of the turbuience. Then if C is
regarded as a "universal" constant, the larger values of ( as used for the
solutions of figure 6 should be corsidered as equivalent to correspending

decreases in the square of the dissipation scale, zde. If 1 41s cons.dered
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an integral scale, the relation between 1 and i3 for isotropic turbulence
(Hinze (1959), p. 185) may be writt . as

e
(@

v

and this r2lation is seen to be in agreement with the results of figure 6 as
related to the change with x in VE profiles of ligure 7, since as (E)ave
increases, l3 should decrease which, according to the above reasoning, accounts
for an increase in dissipation, a reducticn in J%i and finally, the reduction
in Cr, as computed. It can then be expected that a functional relation for I
of the type given by equation (22) would result in good agreement over the
entire test length for this case. The above explanation depends on the
assumption that the integral scale 1 is not affected by (€)gye-

Bocundary-layer thickness parameters and mean velocity profiles.- The
computed values of 6 are compared in figure 8 with the experimental data of
Goldberg (1966). The differences in the values of O between the theoretical
calculations and the experimental data are small, but, as is well known, these
small differenc2s can lead to large effects on Ce.. In general, the velocity
distribution number 1 gives better agreement with the data but it is obvious
that a comparison of € alone is not sufficient to judge the accuracy of a
method when Cp —O.

The shape parameter H is a more sensitive indicator of the accuracy of a
method as shown by figure 9 where tlLe effects of the two velocity distributions,
the values of C, and the 1/8 functions are shown. The velocity distribution
number 2 and the largest value of C give the best agreement with the experi-
mental data for 1/5 = 9 33 However, the use of the other two 1/5 functions
gives the best overall agreement with the data, and bracket the data in the
vicinity of the peak H. The reason for the better agreement of H with data
for 2/6 = Q. o0 and .05 is apparent from comparisons of computed velocity
profiles (not shown herein) with the data. In the vicinity of the minimum Ce
the agreement between the computed and experimental velocity profiles was poor
for 1/6 =@ regardless of the velocity distribution or the value of C.
However, when” @ o and @ o5 vwere used, the theoretical results bracketed
the data.

Discussion of turbulence scale functions.- It has already been noted from
figure 7 that JE 1s relatively inscreitive to changes in free-stream velocity
distribution, C, and the 1/8 function. The computed mean velocity profiles
were insensitive to velocity distribution and C, but could be affected con-
siderably by a change in 1/8. Since the turbulent shear, production, and
dissipation are the dominant terms in the equations, it is apparent from the
above discussion and from the form of these terms (see egs. (2) - (5)) that the
only way to effect the mean velocity profiles, and hence the H values to any
appreciable extent is to modify the turbulence scale function 1/8. In the
previous section, a change in C was related to a change in a dissipation
microscale 13, but from equation (16), a change in C corresponds also to a
change in Prandtl's mixing length constant. Since Prandtl's mixing length rela-
tion is known to apply even in an ¢~ -erse pressure gradient in the law of the
wall region, the 1/ .unction wac not changed for y/6 < 0.2. The Goldberg

(1965) experimental values of mixing lengt> ° . vur -hat 1/86 should be
decreased in the region cf y/8 > 0.7, < : decrease would reduce the
turbulent shear and thereby resulit i. I -+ ment with the experimental
velocity profiles, the 1/8 function  ed in the manner shown by the

tabulations on p. 6. The eddy viccosity runction e/u does not depend on free-
stream velocity distri“ution or C (since \E was independent of these parame-
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ters) but is directly dependent on 1/5 and agrees better with the data for
1/ =@ 0" This direct dependence of €/u on 1/8 is, of course, the reason
for the'marked effect of the 1/6 function on both Cy (fig. ¢) and U/U_.

The success of these modifications to 1/5 indicates that further minor adjust-
ments to these functions should give any desired degree of agreement with
experimental data. In particular, the trends in \JE (fig. 7) for this problen
indicate the magnitude of the change in 1/& should probably depend on the
level of (€)gye- Spalding (19€Ta) has appliad to free shear flows a differen-
tial equation for the mean scale of turbulence. This equation was based on
Rotta's hypothesis (1951, Part II) and relates the scale of turbulence to
(€)gye and 7Tp. It is possible that the use of a similar relation may improve
the predictiors of this present method.

Other adverse pressure gradient cases.- Additional adverse pressure gra-
dient cases have been computed with the "standard" velocity distributions as
supplied for the Stanford cases and for various values of C. The 1/6 func-
tion used for these additional cases was generally the @ 55 function as tabu-
lated on p. 6. Exceptions are noted on the figures. Some Jifficulty was
experienced in obtaining these solutions since input values of E were not
available, except for Bradshaw's (IDENT 2400). When input E values were not
available, a trial and error reini.ializing procedure to obtain input E was
used. This procedure was satisfactory in some cases such as Ludwig Tillman
(IDENT 1200) but in other cases such as Moses (IDENT 3800), the final results
appeared to be quite sensitive to input E profiles as well as input profiles
of V.

CORCLUDING REMARKS

The equations for the incompressible, turbulent boundary layer with
constant fluid properties have been solved by a numerical procedure in simi-
larity type cocrdinates. Comparisons of calculated values for both mean and
fluctuating flow properties with experimental measurements in nonequilibrium
boundary layers as well as the flat-plate boundary layer have indicated
generally good agreement.

For the flat-plate calculation, the laminar Blasius velocity profile and
arbitrary small "disturbance type" profiles for the turbuient kinetic energy
vere used as initial conditions at a Reynolds number of 10%. As the calculation
proceeded, little change in the mean profiles of velocity and turbulent kinetic
energy were noted until at some downstrean station, depending on the level of
the input disturbance and modifications to the turbulence terms, rather abrupt
changes began and the subsequent mean velocity profiles were qualitatively
similar to those observed experimentally in the transition region between
laminar and fully turbulent flow. The Reynolds number at which these changes in
the mean profiles were first obtained in the calculation can therefore be termed
a "transition" Reyrolds number and its dependence on the level of the input
turbulent kinetic energy was shown by Glushko; it is shown herein that modifi-
cations to the models of the turbulent terms also affected this "transition"
Reynolds number.

It was found that when the turbulent diffusion term of Glushko's was
increased by a factor of 3, the agreement with experimental values of mean
velocity and the ratio of turbulent shear to turbulent energy was improved in
the outer portion of the fully turbulent boundary layer for both the flat-plate
and nonequilibrium flows. It was also found that when the dissipation term was
changed for the nonequilibrium flo-, the skin friction was reduced by almost
constant increments that depended 4irectly on reductions in the square of the
dissipation scale. Analysis of these results indicated that the micro-

(aissipation) scale may be related to the integral scale of turbulence in about
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the same way as Ior isotropic turbulence. The best overall agreement with
measured values of skin friction, form factor, mean velocity profiles, and
fluctuating properties was obtainea by reducing the value of the turbulence
scale from a peak of 0.33 to 0.20 or 0.25 of the boundary-layer thickness in
the outer part of the boundary layer. The linear relation of turbulence scale
with distance from the wall, in accordance with Prandtl's mixing length theory
and as uced by Glushko, was retained in the "law of the wall region." It is
concluded that simple modifications to the turbulence scale function and to the
turbulent fluctuation terms as modeled by Glushko result in accurate predic-
tions of mean and fluctuating characteristics of turbulent and transitional
boundary layers with arbitrary boundary conditions.

TABLE I.- INITTIAL VELOCITY AND ENERGY PROFILES AND OTHER
INPUT DATA FOR ADVERSE PRESSURE GRADIENT CASE
Values based on data of Goldberg (1966)

g = 8 x 10° , vV =1.8x 10‘“ ftalsec s P = 0.0T€" 1b/ft3 ’

Ue,o = T7.8 ft/sec , At = 625, A = 0.025 , n = 0.5 ,
1-F,-= 8 x 10~ ,(g%)e =1 x 10~ » B =1x 10'“
] F E
_ o o
0 0 o} -2
%1 .215 .22 x 10
.2 25 .Sk
.3 540 1.05
A .580 1.0%
5 .608 .92
.6 .626 .86
.8 .6k .78
1.0 .662 .72
1.2 .681 675
1.4 .700 .
1.8 731 .615
2.2 .7T60 579
2.6 .790 -530
3.0 818 Ry
k.0 .880 .321
5.0 .92k .203
6.0 .956 .108
6.5 .968 .069
7.0 975 039
7.5 .982 .010
8.0 .991 .01
8.5 .99 .01
9.0 .999 .01
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