13 research outputs found

    Autophagy and radiosensitization in cancer

    Get PDF
    Autophagy is a natural self-degradative process by which cells eliminate misfolded proteins and damaged organelles. Autophagy has been shown to have multiple functions in tumor cells that may be dependent on the tumor type and the treatment conditions. Autophagy can have a cytoprotective role and be thought of as a survival mechanism or be cytotoxic in nature and mediate cell death. Radiation, one of the primary treatments for many different types of cancer, almost uniformly promotes autophagy in tumor cells. While autophagy produced in response to radiation is often considered to be cytoprotective, radiation-induced autophagy has also been shown to mediate susceptibility to radiation. This review addresses the complexity of autophagy in response to radiation treatment in three different cancer models, specifically lung cancer, breast cancer and glioblastoma. A deeper understanding of the different roles played by autophagy in response to radiation should facilitate the development of approaches for enhancing the therapeutic utility of radiation by providing strategies for combination treatment with unique radiosensitizers as well as preventing the initiation of strategies which are likely to attenuate the effectiveness of radiation therapy

    Targeting DNA repair in gliomas

    No full text
    Purpose of review: Gliomas represent a disparate group of malignancies with varying clinical outcomes despite a tremendous amount of time, effort, and resources dedicated to their management and understanding. The most aggressive entity, glioblastoma, has a dismal prognosis with poor local control despite intense local and systemic treatment, including radiation therapy. Recent findings: Given the heterogeneity in genotype, phenotype, and patient outcomes, researchers and clinicians have turned their attention toward attacking DNA damage response and repair mechanisms in gliomas in an effort to develop novel chemo and radiosensitizers. However, despite extensive work in both the laboratory and the clinic, no sensitizers have yet to emerge as clear options in the treatment of glioma, often because of meager preclinical data or an inability to penetrate the blood–brain barrier. Summary: This review will examine current understanding of molecular DNA repair targets in glioma and their potential exploitation to improve local control and, ultimately, overall survival of patients afflicted with these diseases

    Revisiting p53 for Cancer-Specific Chemo- and Radiotherapy: Ten Years after

    No full text
    Despite intense studies, highly effective therapeutic strategies against cancer have not yet been fully exploited, because few true cancer-specific targets have been identified. Most modalities, perhaps with the exception of radiation therapy, target proliferating cells, which are also abundant in normal tissues. Thus, most current cancer treatments have significant side effects. More than 10 years ago, the tumor suppressor p53 was first explored as a cancer-specific target. At the time, the approach was to introduce a normal p53 gene into mutant p53 (mp53) tumor cells to induce cell cycle arrest and apoptosis. However, this strategy did not hold up and mostly failed in subsequent clinical studies. Recent research developments have now returned p53 to the limelight. Several studies have reported that mutant or null p53 tumor cells undergo apoptosis more easily than genetically matched, normal p53 counterparts when inhibiting a specific stress kinase in combination with standard chemotherapy or when exposed to an ataxia-telangiectasia mutated (ATM) kinase inhibitor and radiation, thus achieving true cancer specificity in animal tumor models. This short review highlights several of these recent studies, discusses possible mechanism(s) for mp53-mediated synthetic lethality , and the implications for cancer therapy

    Synthesis of Water-Soluble Camptothecin-Polyoxetane Conjugates via Click Chemistry

    No full text
    Water-soluble camptothecin (CPT)-polyoxetane conjugates were synthesized using a clickable polymeric platform P(EAMO) that was made by polymerization of acetylene-functionalized 3-ethyl-3-(hydroxymethyl)oxetane (i.e., EAMO). CPT was first modified with a linker 6-azidohexanoic acid via an ester linkage to yield CPT-azide. CPT-azide was then click coupled to P(EAMO) in dichloromethane using bromotris(triphenylphosphine)copper(I)/N,N-diisopropylethylamine. For water solubility and cytocompatibility improvement, methoxypolyethylene glycol azide (mPEG-azide) was synthesized from mPEG 750 g mol-1 and click grafted using copper(II) sulfate and sodium ascorbate to P(EAMO)-g-CPT. 1H NMR spectroscopy confirmed synthesis of all intermediates and the final product P(EAMO)-g-CPT/PEG. CPT was found to retain its therapeutically active lactone form. The resulting P(EAMO)-g-CPT/PEG conjugates were water-soluble and produced dose-dependent cytotoxicity to human glioma cells and increased Îł-H2AX foci formation, indicating extensive cell cycle-dependent DNA damage. Altogether, we have synthesized CPT-polymer conjugates able to induce controlled toxicity to human cancer cells

    An Evaluation of Health Numeracy among Radiation Therapists and Dosimetrists

    No full text
    Purpose: Medical errors in radiation oncology sometimes involve tasks reliant on practitioners’ grasp of numeracy. Numeracy has been shown to be suboptimal across various health care professionals. Herein, we assess health numeracy among American Society of Radiologic Technologists (ASRT) members. Methods and materials: The Numeracy Understanding for Medicine instrument (NUMi), an instrument to measure numeracy in the general population, was adapted to oncology for this study and distributed to ASRT members (n = 14,228) in 2017. Per NUMi scoring, health numeracy scores were categorized as low (0-7), low average (8-12), high average (13-17), or high (18-20). The impact of cGy versus Gy on numeracy performance was investigated. Spearman’s rho and a Wilcox-Mann-Whitney test were used for comparisons between the different groups. Results: A total of 662 eligible participants completed the instrument and identified as radiation oncology professionals. In the cGy and Gy NUMi scores, approximately 2% of respondents scored low-average, approximately 40% scored high-average, and approximately 58% scored high, with a median score of 18.0. Although the optimum NUMi score for ASRT members is unknown, one might expect our cohort to have numeracy skills at least as high as college freshmen. Roughly one-sixth of our study group scored at or below the average score of college freshmen (NUMi = 15). In the subset analysis of NUMi questions pertaining to radiation dose unit (cGy vs Gy), respondents performed better with cGy (mean score: 2.94; range, 2-3) versus Gy (mean: 2.91; range, 0-3; P = .011). Conclusions: In this study of limited sample size, overall numeracy is quite good compared with the general population. However, the range of scores is wide, and some respondents have lower scores that may be concerning, suggesting that numeracy may be an issue that requires improvement for a subset of the studied cohort. Performance was superior with the unit cGy; thus, the adoption of cGy as the standard unit is reasonable

    Inhibition of radiation-induced glioblastoma invasion by genetic and pharmacological targeting of MDA-9/Syntenin

    No full text
    Glioblastoma multiforme (GBM) is an intractable tumor despite therapeutic advances, principally because of its invasive properties. Radiation is a staple in therapeutic regimens, although cells surviving radiation can become more aggressive and invasive. Subtraction hybridization identified melanoma differentiation-associated gene 9 [MDA-9/Syntenin; syndecan-binding protein (SDCBP)] as a differentially regulated gene associated with aggressive cancer phenotypes in melanoma. MDA-9/Syntenin, a highly conserved double-PDZ domain-containing scaffolding protein, is robustly expressed in human-derived GBM cell lines and patient samples, with expression increasing with tumor grade and correlating with shorter survival times and poorer response to radiotherapy. Knockdown of MDA-9/Syntenin sensitizes GBM cells to radiation, reducing postradiation invasion gains. Radiation induces Src and EGFRvIII signaling, which is abrogated through MDA-9/Syntenin down-regulation. A specific inhibitor of MDA-9/Syntenin activity, PDZ1i (113B7), identified through NMR-guided fragment-based drug design, inhibited MDA-9/Syntenin binding to EGFRvIII, which increased following radiation. Both genetic (shmda-9) and pharmacological (PDZ1i) targeting of MDA-9/Syntenin reduced invasion gains in GBM cells following radiation. Although not affecting normal astrocyte survival when combined with radiation, PDZ1i radiosensitized GBM cells. PDZ1i inhibited crucial GBM signaling involving FAK and mutant EGFR, EGFRvIII, and abrogated gains in secreted proteases, MMP-2 and MMP-9, following radiation. In an in vivo glioma model, PDZ1i resulted in smaller, less invasive tumors and enhanced survival. When combined with radiation, survival gains exceeded radiotherapy alone. MDA-9/Syntenin (SDCBP) provides a direct target for therapy of aggressive cancers such as GBM, and defined small-molecule inhibitors such as PDZ1i hold promise to advance targeted brain cancer therapy

    Peptide Library Approach to Uncover Phosphomimetic Inhibitors of the BRCA1 C‑Terminal Domain

    No full text
    Many intracellular protein–protein interactions are mediated by the phosphorylation of serine, and phosphoserine-containing peptides can inhibit these interactions. However, hydrolysis of the phosphate by phosphatases, and the poor cell permeability associated with phosphorylated peptides has limited their utility in cellular and <i>in vivo</i> contexts. Compounding the problem, strategies to replace phosphoserine in peptide inhibitors with easily accessible mimetics (such as Glu or Asp) routinely fail. Here, we present an <i>in vitro </i>selection strategy for replacement of phosphoserine. Using mRNA display, we created a 10 trillion member structurally diverse unnatural peptide library. From this library, we found a peptide that specifically binds to the C-terminal domain (BRCT)<sub>2</sub> of breast cancer associated protein 1 (BRCA1) with an affinity comparable to phosphorylated peptides. A crystal structure of the peptide bound reveals that the pSer-x-x-Phe motif normally found in BRCA1 (BRCT)<sub>2</sub> binding partners is replaced by a Glu-x-x-4-fluoroPhe and that the peptide picks up additional contacts on the protein surface not observed in cognate phosphopeptide binding. Expression of the peptide in human cells led to defects in DNA repair by homologous recombination, a process BRCA1 is known to coordinate. Overall, this work validates a new <i>in vitro</i> selection approach for the development of inhibitors of protein–protein interactions mediated by serine phosphorylation

    Inhibition of radiation-induced glioblastoma invasion by genetic and pharmacological targeting of MDA-9/Syntenin

    No full text
    Glioblastoma multiforme (GBM) is an intractable tumor despite therapeutic advances, principally because of its invasive properties. Radiation is a staple in therapeutic regimens, although cells surviving radiation can become more aggressive and invasive. Subtraction hybridization identified melanoma differentiation-associated gene 9 [MDA-9/Syntenin; syndecan-binding protein (SDCBP)] as a differentially regulated gene associated with aggressive cancer phenotypes in melanoma. MDA-9/Syntenin, a highly conserved double-PDZ domain-containing scaffolding protein, is robustly expressed in human-derived GBM cell lines and patient samples, with expression increasing with tumor grade and correlating with shorter survival times and poorer response to radiotherapy. Knockdown of MDA-9/Syntenin sensitizes GBM cells to radiation, reducing postradiation invasion gains. Radiation induces Src and EGFRvIII signaling, which is abrogated through MDA-9/Syntenin down-regulation. A specific inhibitor of MDA-9/Syntenin activity, PDZ1i (113B7), identified through NMR-guided fragment-based drug design, inhibited MDA-9/Syntenin binding to EGFRvIII, which increased following radiation. Both genetic (shmda-9) and pharmacological (PDZ1i) targeting of MDA-9/Syntenin reduced invasion gains in GBM cells following radiation. Although not affecting normal astrocyte survival when combined with radiation, PDZ1i radiosensitized GBM cells. PDZ1i inhibited crucial GBM signaling involving FAK and mutant EGFR, EGFRvIII, and abrogated gains in secreted proteases, MMP-2 and MMP-9, following radiation. In an in vivo glioma model, PDZ1i resulted in smaller, less invasive tumors and enhanced survival. When combined with radiation, survival gains exceeded radiotherapy alone. MDA-9/Syntenin (SDCBP) provides a direct target for therapy of aggressive cancers such as GBM, and defined small-molecule inhibitors such as PDZ1i hold promise to advance targeted brain cancer therapy
    corecore