6,382 research outputs found

    Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators

    Full text link
    Whispering gallery resonators (WGR's), based on total internal reflection, possess high quality factors in a broad spectral range. Thus, nonlinear optical processes in such cavities are ideally suited for the generation of broadband or tunable electromagnetic radiation. Experimentally and theoretically, we investigate the tunability of optical parametric oscillation in a radially structured WGR made of lithium niobate. With a 1.04 /mum pump wave, the signal and idler waves are tuned from 1.78 to 2.5 \mum - including the point of degeneracy - by varying the temperature between 20 and 62 {\deg}C. A weak off-centering of the radial domain structure extends considerably the tuning capabilities. The oscillation threshold lies in the mW-power range.Comment: 4 pages, 5 figure

    Evolving quorum sensing in digital organisms

    Get PDF
    For centuries it was thought that bacteria live asocial lives. However, recent discoveries show many species of bacteria communicate in order to perform tasks previously thought to be limited to multicellular organisms. Central to this capability is quorum sensing, whereby organisms detect cell density and use this information to trigger group behaviors. Quorum sensing is used by bacteria in the formation of biofilms, secretion of digestive enzymes and, in the case of pathogenic bacteria, release of toxins or other virulence factors. Indeed, methods to disrupt quorum sensing are currently being investigated as possible treatments for numerous diseases, including cystic fibrosis, epidemic cholera, and methicillin-resistant Staphylococcus aureus. In this paper we demonstrate the evolution of a quorum sensing behavior in populations of digital organisms. Specifically, we show that digital organisms are capable of evolving a strategy to collectively suppress self-replication, when the population density reaches a specific, evolved threshold. We present the evolved genome of an organism exhibiting this behavior and analyze the collective operation of this “algorithm. ” Finally, through a set of experiments we demonstrate that the behavior scales to populations up to 400 times larger than those in which the behavior evolved

    Dimensionality effects on non-equilibrium electronic transport in Cu nanobridges

    Full text link
    We report on non-equilibrium electronic transport through normal-metal (Cu) nanobridges coupled to large reservoirs at low temperatures. We observe a logarithmic temperature dependence of the zero-bias conductance, as well as a universal scaling behavior of the differential conductance. Our results are explained by electron-electron interactions in diffusive metals in the zero-dimensional limit.Comment: RevTex, 4 page
    • 

    corecore