949 research outputs found

    Measurability of Wilson loop operators

    Get PDF
    We show that the nondemolition measurement of a spacelike Wilson loop operator W(C) is impossible in a relativistic non-Abelian gauge theory. In particular, if two spacelike-separated magnetic flux tubes both link with the loop C, then a nondemolition measurement of W(C) would cause electric charge to be transferred from one flux tube to the other, a violation of relativistic causality. A destructive measurement of W(C) is possible in a non-Abelian gauge theory with suitable matter content. In an Abelian gauge theory, many cooperating parties distributed along the loop C can perform a nondemolition measurement of the Wilson loop operator if they are equipped with a shared entangled ancilla that has been prepared in advance. We also note that Abelian electric charge (but not non-Abelian charge) can be transported superluminally, without any accompanying transmission of information.Comment: 17 pages, 7 figures, REVTe

    Efficient networks for quantum factoring

    Get PDF
    We consider how to optimize memory use and computation time in operating a quantum computer. In particular, we estimate the number of memory quantum bits (qubits) and the number of operations required to perform factorization, using the algorithm suggested by Shor [in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA, 1994), p. 124]. A K-bit number can be factored in time of order K3 using a machine capable of storing 5K+1 qubits. Evaluation of the modular exponential function (the bottleneck of Shor’s algorithm) could be achieved with about 72K3 elementary quantum gates; implementation using a linear ion trap would require about 396K3 laser pulses. A proof-of-principle demonstration of quantum factoring (factorization of 15) could be performed with only 6 trapped ions and 38 laser pulses. Though the ion trap may never be a useful computer, it will be a powerful device for exploring experimentally the properties of entangled quantum states

    Shuttle Operations Era Planning for Flight Operations

    Get PDF
    The Space Transportation System (STS) provides routine access to space for a wide range of customers in which cargos vary from single payloads on dedicated flights to multiple payloads that share Shuttle resources. This paper describes the flight operations planning process from payload introduction through flight assignment to execution of the payload objectives and the changes that have been introduced to improve that process. Particular attention is given to the factors that influence the amount of preflight preparation necessary to satisfy customer requirements. The partnership between the STS operations team and the customer is described in terms of their functions and responsibilities in the development of a flight plan. A description of the Mission Control Center (MCC) and payload support capabilities completes the overview of Shuttle flight operations

    Lunar prospector mission design and trajectory support

    Get PDF
    The Lunar Prospector mission is the first dedicated NASA lunar mapping mission since the Apollo Orbiter program which was flown over 25 years ago. Competitively selected under the NASA Discovery Program, Lunar Prospector was launched on January 7, 1998 on the new Lockheed Martin Athena 2 launch vehicle. The mission design of Lunar Prospector is characterized by a direct minimum energy transfer trajectory to the moon with three scheduled orbit correction maneuvers to remove launch and cislunar injection errors prior to lunar insertion. At lunar encounter, a series of three lunar orbit insertion maneuvers and a small circularization burn were executed to achieve a 100 km altitude polar mapping orbit. This paper will present the design of the Lunar Prospector transfer, lunar insertion and mapping orbits, including maneuver and orbit determination strategies in the context of mission goals and constraints. Contingency plans for handling transfer orbit injection and lunar orbit insertion anomalies are also summarized. Actual flight operations results are discussed and compared to pre-launch support analysis

    Manual pages for SAGA software tools, appendix H

    Get PDF
    Several pages from the SAGA UNIX programmer's manual are presented. These pages are for SAGA software tools

    Ideal barriers to polarization reversal and domain-wall motion in strained ferroelectric thin films

    Full text link
    The ideal intrinsic barriers to domain switching in c-phase PbTiO_3 (PTO), PbZrO_3 (PZO), and PbZr_{1-x}Ti_xO_3 (PZT) are investigated via first-principles computational methods. The effects of epitaxial strain on the atomic structure, ferroelectric response, barrier to coherent domain reversal, domain-wall energy, and barrier to domain-wall translation are studied. It is found that PTO has a larger polarization, but smaller energy barrier to domain reversal, than PZO. Consequentially the idealized coercive field is over two times smaller in PTO than PZO. The Ti--O bond length is more sensitive to strain than the other bonds in the crystals. This results in the polarization and domain-wall energy in PTO having greater sensitivity to strain than in PZO. Two ordered phases of PZT are considered, the rock-salt structure and a (100) PTO/PZO superlattice. In these simple structures we find that the ferroelectric properties do not obey Vergard's law, but instead can be approximated as an average over individual 5-atom unit cells.Comment: 9 pages, 13 figure
    • …
    corecore