892 research outputs found
Transcending History’s Heavy Hand: The Future in Economic Action
Abstract This paper discusses sociological analyses of the formation and role of expectations in the economy. Recognition of the social constitution of expectations advances the understanding of economic action under conditions of uncertainty and helps to explain core features of modern capitalist societies. The range of applications of the analytical perspective is illustrated by closer examination of three core spheres of capitalist societies: consumption, investment, and innovation. To provide an idea of core challenges of the approach, three major research questions for the sociological analysis of expectations are presented.Zusammenfassung Wie lassen sich die Entstehung und die Rolle von Erwartungen in der Wirtschaft soziologisch analysieren? Erwartungen sind sozial konstituiert. Der Rekurs auf Erwartungen trägt zum Verständnis wirtschaftlichen Handelns unter Bedingungen von Unsicherheit und zum Verständnis charakteristischer Wesenszüge moderner kapitalistischer Gesellschaften bei. Nähere Betrachtungen von drei Sphären wirtschaftlicher Aktivität – Konsum, Investition und Innovation – verdeutlichen das breite Spektrum möglicher Anwendungen der Erwartungsperspektive in der Wirtschaftssoziologie. Die zentralen Herausforderungen für die soziologische Analyse von Erwartungen werden anschließend anhand von drei wichtigen Forschungsfragen skizziert.Contents 1 Introduction 2 Uncertainty and the social constitution of expectations 3 Expectations in contemporary capitalism Consumption Investment Innovation 4 Questions and perspectives of an economic sociology of expectations Where do expectations come from? How do expectations spread and gain momentum? The moral economy of expectations 5 Conclusion Reference
Radiative Transfer Modeling of Three-Dimensional Clumpy AGN Tori and its Application to NGC 1068
Recent observations of NGC 1068 and other AGN support the idea of a
geometrically and optically thick dust torus surrounding the central
supermassive black hole and accretion disk of AGN. In type 2 AGN, the torus is
seen roughly edge-on, leading to obscuration of the central radiation source
and a silicate absorption feature near 10 micron. While most of the current
torus models distribute the dust smoothly, there is growing evidence that the
dust must be arranged in clouds. We describe a new method for modeling near-
and mid-infrared emission of 3-dimensional clumpy tori using Monte Carlo
simulations. We calculate the radiation fields of individual clouds at various
distances from the AGN and distribute these clouds within the torus region. The
properties of the individual clouds and their distribution within the torus are
determined from a theoretical approach of self-gravitating clouds close to the
shear limit in a gravitational potential. We demonstrate that clumpiness in AGN
tori can overcome the problem of over-pronounced silicate features. Finally, we
present model calculations for the prototypical Seyfert 2 galaxy NGC 1068 and
compare them to recent high-resolution measurements. Our model is able to
reproduce both the SED and the interferometric observations of NGC 1068 in the
near- and mid-infrared.Comment: 16 pages, 16 figures, 6 tables (figures reduced due to astro-ph
limitations); accepted by A&
Where have all the black holes gone?
We have calculated stationary models for accretion disks around super-massive
black holes in galactic nuclei. Our models show that below a critical mass flow
rate of ~3 10**-3 M_Edd advection will dominate the energy budget while above
that rate all the viscously liberated energy is radiated. The radiation
efficiency declines steeply below that critical rate. This leads to a clear
dichotomy between AGN and normal galaxies which is not so much given by
differences in the mass flow rate but by the radiation efficiency. At very low
mass accretion rates below 5 10**-5 M_Edd synchrotron emission and
Bremsstrahlung dominate the SED, while above 2 10**-4 M Edd the inverse Compton
radiation from synchrotron seed photons produce flat to inverted SEDs from the
radio to X-rays. Finally we discuss the implications of these findings for AGN
duty cycles and the long-term AGN evolution.Comment: 7 pages, 5 figures, accepted for publication in A&
Hybrid Thermal-Nonthermal Synchrotron Emission from Hot Accretion Flows
We investigate the effect of a hybrid electron population, consisting of both
thermal and non-thermal particles, on the synchrotron spectrum, image size, and
image shape of a hot accretion flow onto a supermassive black hole. We find two
universal features in the emitted synchrotron spectrum: (i) a prominent
shoulder at low (< 10^11 Hz) frequencies that is weakly dependent on the shape
of the electron energy distribution, and (ii) an extended tail of emission at
high (> 10^13 Hz) frequencies whose spectral slope depends on the slope of the
power-law energy distribution of the electrons. In the low-frequency shoulder,
the luminosity can be up to two orders of magnitude greater than with a purely
thermal plasma even if only a small fraction (< 1%) of the steady-state
electron energy is in the non-thermal electrons. We apply the hybrid model to
the Galactic center source, Sgr A*. The observed radio and IR spectra imply
that at most 1% of the steady-state electron energy is present in a power-law
tail in this source. This corresponds to no more than 10% of the electron
energy injected into the non-thermal electrons and hence 90% into the thermal
electrons. We show that such a hybrid distribution can be sustained in the flow
because thermalization via Coulomb collisions and synchrotron self-absorption
are both inefficient. The presence of non-thermal electrons enlarges the size
of the radio image at low frequencies and alters the frequency dependence of
the brightness temperature. A purely thermal electron distributions produces a
sharp-edged image while a hybrid distribution causes strong limb brightening.
These effects can be seen up to frequencies ~10^11 Hz and are accessible to
radio interferometers.Comment: 33 pages with figures, to appear in the Astrophysical Journa
Sgr A* Polarization: No ADAF, Low Accretion Rate, and Non-Thermal Synchrotron Emission
The recent detection of polarized radiation from Sgr A* requires a
non-thermal electron distribution for the emitting plasma. The Faraday rotation
measure must be small, placing strong limits on the density and magnetic field
strength. We show that these constraints rule out advection-dominated accretion
flow models. We construct a simple two-component model which can reproduce both
the radio to mm spectrum and the polarization. This model predicts that the
polarization should rise to nearly 100% at shorter wavelengths. The first
component, possibly a black-hole powered jet, is compact, low density, and
self-absorbed near 1 mm with ordered magnetic field, relativistic Alfven speed,
and a non-thermal electron distribution. The second component is poorly
constrained, but may be a convection-dominated accretion flow with dM/dt~10^-9
M_Sun/yr, in which feedback from accretion onto the black hole suppresses the
accretion rate at large radii. The black hole shadow should be detectable with
sub-mm VLBI.Comment: 4 pages, 1 figure, accepted by ApJL, several changes from submitted
versio
Stellar Dynamics at the Galactic Center with an Extremely Large Telescope
We discuss experiments achievable via monitoring of stellar dynamics near the
massive black hole at the Galactic center with a next generation, extremely
large telescope (ELT). Given the likely observational capabilities of an ELT
and current knowledge of the stellar environment at the Galactic center, we
synthesize plausible samples of stellar orbits around the black hole. We use
the Markov Chain Monte Carlo method to evaluate the constraints that orbital
monitoring places on the matter content near the black hole. Results are
expressed as functions of the number N of stars with detectable orbital motions
and the astrometric precision dtheta and spectroscopic precision dv at which
stellar proper motions and radial velocities are monitored. For N = 100, dtheta
= 0.5 mas, and dv = 10 km/s -- a conservative estimate of the capabilities of a
30 meter telescope -- the extended matter distribution enclosed by the orbits
will produce measurable deviations from Keplerian motion if >1000 Msun is
enclosed within 0.01 pc. The black hole mass and distance to the Galactic
center will be measured to better than ~0.1%. Lowest-order relativistic
effects, such as the prograde precession, will be detectable if dtheta < 0.5
mas. Higher-order effects, including frame dragging due to black hole spin,
requires dtheta < 0.05 mas, or the favorable discovery of a compact, highly
eccentric orbit. Finally, we calculate the rate at which monitored stars
undergo detectable nearby encounters with background stars. Such encounters
probe the mass function of stellar remnants that accumulate near the black
hole. We find that ~30 encounters will be detected over a 10 yr baseline for
dtheta = 0.5 mas.Comment: 14 pages, 5 figures; discussion no longer aperture-specific (TMT ->
ELT), matches ApJ versio
- …